Как прозвонить трехфазный двигатель мегаомметром

Содержание:

Принцип работы

Тестирование состояния изоляции, было разработано в начале 20-го века и является старейшим и наиболее широко используемым измерительным процессом в современной электротехнике и проводится согласно государственным стандартами электробезопасности. Это вызвано тем, что даже без видимых повреждений в изоляции кабельных сетей, ее сопротивление может стать недостаточным, чтобы защитить человека от воздействия токов высокого напряжения.

Принцип работы

Факторы, способствующие ухудшению изоляции:

  1. Температурный. Перепады температур с холодной на горячую, и наоборот с течением времени вызывают растрескивание изоляции.
  2. Электрический. Все кабели изготавливаются для определенных условий эксплуатации. Нарушений заводских условий использования может подвергнуть кабель к перенапряжению с потерей изоляции своих защитных свойств.
  3. Физический. Повреждение изоляции из-за нарушений эксплуатации или других неправомерных действий обслуживающего персонала.
  4. Химический. Моторное масло, грязь и пыль могут оказывать неблагоприятное химическое воздействие на изоляцию проводов.
  5. Окружающая среда. Этот фактор всегда воздействует на защитное покрытие кабелей: ультрафиолетовые лучи, влажность, снег и природные факторы, что должно учитываться разработчиками кабельной продукции.

Измерение сопротивления

Принцип работы меггера:

  1. Напряжение для тестирования ручным мегомметром получают путем вращения кривошипа, электронного типа — аккумулятором.
  2. 500В DC достаточно для выполнения тестирования систем работающих с напряжением до 440 В, а режим 1000 В до 5000 В — для испытаний высоковольтных электрических систем.
  3. Отклоняющая или токовая катушка соединена последовательно и позволяет пропускать электрический ток, принимаемый проверяемой цепью.
  4. Катушка управления, подключена к цепи.
  5. Токоограничивающий резистор (CCR и PCR) соединен последовательно с катушкой управления для защиты от повреждения в случае очень низкого сопротивления во внешней цепи.
  6. В мегомметре с ручным управлением эффект электромагнитной индукции используется для создания тестового напряжения. По мере увеличения его во внешней цепи, отклонение указателя увеличивается и уменьшается с увеличением тока.
  7. Работа тестера базируется на принципе омметра. Крутящий момент создается мегомметром из-за магнитного поля, создаваемого напряжением и током, аналогично закону Ома. Крутящий момент мегомметра меняется пропорционально V/I: V = IR или R = V / I, единица 1 Ом.
  8. Измеряемое электрическое сопротивление подключается через генератор и последовательно с отклоняющей катушкой. Когда проверяемая электроцепь разомкнута, крутящий момент из-за катушки напряжения будет максимальным, а стрелка показывать «бесконечность», что означает отсутствие короткого замыкания во всей цепи и имеет максимальное сопротивление в проверяемой цепи.

Важно! Если имеется КЗ, указатель показывает «ноль», что означает полное отсутствие сопротивление изоляционного покрытия

Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)

Мегаомметр ЭСО-210

Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой — трансформатор, преобразующий переменное напряжение в постоянное.

Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».

Шкала «I» — нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.

Шкала «II» — верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.

Шкала «IIx10» — аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.

В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.

При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.

Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.

Мегаомметр sonel mic-2510

Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом «энтер» и всё – следи за показаниями и не подпускай никого под напряжение.

Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.

Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.

Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм — впечатляющая величина.

Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.

Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.

В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.

Как подключить мегаомметр?

Для каждой модели приборов данного назначения определена величина выходного напряжения, поэтому чтобы эффективно испытать изоляцию или измерить ее сопротивление требуется правильно подобрать мегаомметр.

Watch this video on YouTube

Для проверки изоляции кабеля мегаомметром создают так называемый экстремальный случай, при котором на испытуемый участок подают напряжение выше номинального, но в допустимых нормах, прописанных в технической документации.

Например: генератор мегаомметра может выдавать:

  • 100V;
  • 250V;
  • 500V;
  • 700V;
  • 1000V;
  • 2500V.

Соответственно подача напряжения должна быть на порядок большей.

Длительность процесса измерения обычно не превышает 30 секунд или минуты, это необходимо для более точного выявления дефектов, а также исключения их последующего появления при перепадах напряжения в сети.

Основа технологического процесса измерения сопротивления это: подготовка к процессу, его выполнение и финальный этап.  Каждый из них включает определенный перечень манипуляций необходимых для достижения поставленной цели без ущерба для окружающих и в первую очередь для себя.

При подготовке к работе следует организовать свои действия, изучить схему электрической установки, чтобы исключить возможную поломку, а также обеспечить свою безопасность.

Начиная работу, следует прежде проверить прибор на исправность. Для этого выводы соединяют с измерительными проводами. Затем их концы соединяют друг с другом пытаясь закоротить. После подачи напряжения замеряют показания измерений (они должны быть равны нулю). Следующий этап предусматривает повторный замер. В случае отсутствия неисправностей показание должно отличаться от предыдущего.

Затем подсоединяют переносное заземление к контуру земли, проверяют и обеспечивают отсутствие напряжение на участке, устанавливают переносное заземление, собирают схему измерения прибора, снимают переносное напряжение, снимают остаточный заряд, отключают соединительный провод, снимают переносное напряжение.

Финальный этап предусматривает восстановление разобранных цепочек, снятие шунтов и закороток, а также подготовку схемы к рабочему режиму. Документируют полученные результаты измерений сопротивления изоляционного слоя в акте поверки изоляции.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Что такое петля фаза-ноль простым языком — методика проведения измерения

Прозвонка проводов с помощью мультиметра — что это значит и как выполняется

Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

Для чего предназначены токоизмерительные клещи?

Как измеряется сопротивление мегаомметром

Измерение сопротивление изоляции мегаомметром любых видов кабельных линий производится практически одинаково с некоторыми специфичными различиями. Чтобы понять, какие отличия есть в каждом случае, разберем их все три по отдельности.

Измерение высоковольтных линий

Итак, в первую очередь кабель проверяется на отсутствие на нем напряжения. Для этого используются специальные указатели высокого напряжения. После чего сам измерительный прибор подключается к жилам со стороны, где проверяется изоляция. С другой стороны жилы разводятся на определенное расстояние, узаконенное ПУЭ. Кстати, именно с этой стороны необходимо поставить человека, который будет выполнять функции сторожа, чтобы любопытные не решили потрогать торчащие провода голыми руками. Обязательно везде вывешиваются плакаты о том, что проводятся испытания.

Теперь можно проводить тестирование. Для этого проверяется каждая жила. То есть, две свободные заземляются, а к проверяемой подключается один вывод мегаомметра, а его второй вывод подключается к земле (заземлению). Далее, измеряют сопротивление мегаомметром на 2500 вольт. Длительность испытания – одна минута. Точно также проверяются и другие.

Испытание низковольтных кабелей

Предварительные этапы здесь точно такие же. А вот схема самого измерения сильно отличается от вышеописанной. В низковольтных линиях несколько схем подключения и испытания. Вот они с учетом маркировки жил (А; В и С).

  • Сначала испытываются жилы между собой. То есть, А-С, А-В и С-В.
  • Далее, производится проверка между каждой жилой и нулем. То есть, N-А, N-В и N-С.
  • Затем между жилами и заземляющим контуром. То есть, PE-А, PE-В, PE-С.
  • И обязательно проверяется сопротивление нулевого контура. При этом подключение мегаомметра производится по схеме N-PE. Не забывайте, что в этом случае ноль необходимо отключить от заземления.

Испытание контрольных кабельных систем

Измерение сопротивления изоляции контрольных систем кабелей производится по той же технологии с единственным отличием. То есть, сначала производится определение отсутствия напряжения на жилах, выставляется мегаомметр на проверку 500-2500 вольт.

Один конец (выход) прибора подключается к концу испытуемого кабеля, второй к заземлению. Остальные жилы соединяются между собой и подключаются к заземляющему контуру. Можно второй выход мегаомметра подключить к одной из свободных жил. Проверка проводится в течение одной минуты. Точно также проверяются все жилы кабеля.

Полученные результаты обязательно записываются, а в последствии сравниваются с табличными. Таблицы можно найти в ПУЭ и ПТЭЭП. Если фактическое значение не ниже табличного, то проверяемый кабель можно дальше эксплуатировать. Кстати, на основе проводимых испытаний должно быть сделано заключение и обязательно составлен протокол, где указаны фактические показатели тестирования.

Отличие мегаомметра от мультиметра

Отключился автомат, квартира погрузилась во мрак. Причина – короткое замыкание. Нужно найти место повреждения, иначе света не будет. Если в результате перегрева замкнулись между собой две жилы в соединительной коробке или в кабеле, найти его можно и мультиметром в режиме измерения сопротивления. На неисправной паре жил он покажет ноль. Но это – простой случай.

Обугленный участок изоляции имеет сопротивление, далекое от нуля. Через него протекает небольшой ток, подогревая оболочку, постепенно ухудшая изоляцию. В какой-то момент происходит пробой, ток резко возрастает, срабатывает защита. Поврежденный участок мгновенно остывает, его сопротивление увеличивается. Мультиметр покажет, что оно равно бесконечно большой величине. Чтобы нейти такое повреждение, нужен прибор, выдающий при измерениях в тестируемую цепь напряжение, соизмеримое или большее, чем напряжение в сети. Таким прибором является мегаомметр.

Методика измерения сопротивления изоляции кабеля

Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к
  • гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Оценка результатов

Для небольших объектов за сопротивление изоляции считают данные, полученные через 15 секунд. Экраном не пользуются, так как емкость невелика (например, электродвигатель, который не подключен к длинному кабелю.) Коэффициент абсорбции также не измеряют. Во всех остальных случаях, и для кабельных линиях сопротивлением изоляции считают данные, полученные после 60 секунд. Индекс поляризации измеряют при комплексных испытаниях электроустановок.

Читателям этой статьи, скорее всего, придется измерять небольшие объекты, где измерение изоляции производится по упрощенному варианту. Мегаомметры дают возможность выбирать требуемые режимы измерений в своем меню, поскольку все измерительные процедуры более-менее стандартизованы. Несмотря на это, нельзя ни на секунду забывать о соблюдении мер безопасности, которые перечислены в статье!

Проверка изоляции кабеля с помощью мегаомметра

Сопротивление изоляции — это наиболее важный параметр работоспособности кабеля, и как только сопротивление падает ниже определенного уровня, то кабель признается негодным и подлежит незамедлительной замене. В этой статье я расскажу о причинах, приводящих к ухудшению изоляции, и как правильно проверить ее уровень с помощью мегаомметра.

Оглавление

Почему изоляция ухудшается.

Техника безопасности при работе с мегаомметром.

Проверка работоспособности мегаомметра.

Как понять, что изоляция стала негодной.

Почему изоляция ухудшается

Существует целый ряд факторов, влияющих на величину сопротивления изоляции, а именно:

1. Атмосферные условия. Если кабель будет постоянно окружен влагой, то даже микротрещина в изоляционном материале приведет к тому, что сопротивление изоляции резко ухудшится. Именно поэтому в дождливую погоду электроприборы, подключенные через кабель, с плохой изоляцией могут просто напросто не работать.

2. Неправильная укладка кабеля. Если при укладке кабеля допустить повреждение изоляционного материала, то даже новый кабель (при образовании сырости) может показать низкий показатель сопротивления изоляции.

3. Устаревание изоляции. Как ни крути даже самый качественный провод со сверх надежной изоляцией с течением времени придет в негодность из-за постоянного воздействия окружающей среды.

Чтобы вовремя выявить проблемный кабель и не допустить аварийной ситуации, как раз и применяется для периодической проверки состояния такой прибор как мегаомметр.

Существуют как механические, так и электронные измерительные приборы. Далее я расскажу о процессе проверки кабеля механическим Мегаомметром ЭС0202/2-Г.

Техника безопасности при работе с мегаомметром

Для осуществления безопасной проверки в Правилах по охране труда при эксплуатации электроустановок (в редакции Приказа Минтруда России от 12.02.2016 № 74н) звучат следующие требования:

Проверка работоспособности мегомметра

Перед непосредственными измерениями изоляции необходимо проверить работоспособность самого измерительного прибора. Для этого выполните следующие действия:

— Достаньте прибор из чехла и внимательно осмотрите его щупы. На них вы не должны обнаружить повреждения изоляционного материала;

— Затем вставляем щупы, выставляем регуляторы как показано на картинке и прокручиваем ручку несколько раз и убеждаемся, что стрелка стремится к показу бесконечного сопротивления;

— Следующим шагом замыкаем щупы между собой (с помощью крокодилов) и так же делаем несколько оборотов и убеждаемся, что стрелка показывает нулевое значение;

Итак, убедившись в полной исправности измерительного аппарата, можно приступать к дальнейшим действиям.

Проверка изоляции кабеля

1. Перед проверкой кабель отключаем от электроустановки с двух сторон и заземляем его.

2. Затем подсоединяем мегаомметр к измеряемой жиле и заземляющему контуру (или к двум соседним жилам, если проверяем сопротивление изоляции между жилами), при этом сам прибор должен быть установлен на горизонтальной поверхности.

Примечание. В зависимости от положения переключателя Мегаомметр ЭС0202/2-Г способен измерять сопротивление до 50 и до 10 000 МОм.

3. Далее снимаем заземление с измеряемых жил.

4. Начинаем крутить ручку и следим за показателями прибора. Причем если мы производим измерение высоковольтного кабеля, то устанавливаем регулятор напряжения на 2 500 V.

Если на первом пределе показания прибора зашкаливают, то переводим его на второй предел и теперь в показаниях будет учавствовать верхняя шкала.

5. Затем фиксируем показания. А потом специальной перемычкой (сойдет обычный кусок провода) снимаем остаточный заряд с измеряемой жилы (соединяя ее с землей) и устанавливаем заземление обратно.

6. Все, измерения конкретно этой жилы или жил считается оконченным. Измерения других концов кабеля происходит точно так же. Но по условиям работы данного мегаомметра перерыв между каждым измерением должен быть равен двум минутам.

При этом выбор напряжения для испытания регламентируется ПУЭ 7-е издание п. 1.8.7

Как понять, что изоляция стала негодной

Согласно требованиям технической документации нижний предел изоляции после которого замена кабеля неизбежна, равняется 0,5 МОм

Но для лучшего ориентирования в степени качества изоляции кабеля можно воспользоваться следующей таблицей

Этого будет вполне достаточно, чтобы понять степень изношенности изоляции конкретного кабеля.

Это все, что я хотел вам рассказать о проверке изоляции кабеля с применением мегаомметра. Если статья была вам интересна или полезна, то оцените ее лайком.

На что обращать внимание при работах с мегаометром

Повышенное напряжение прибора

Выходной мощности генератора мегаомметра вполне достаточно для того, чтобы не только определить появление микротрещин в слое изоляции, но и получить серьезную электрическую травму. По этой причине правила безопасности разрешают пользоваться прибором только обученному и хорошо подготовленному персоналу, допущенному к работам в электроустановках под напряжением. А это минимум третья группа по ТБ. Повышенное напряжение прибора во время замера присутствует на испытуемой схеме, соединительных проводах и клеммах. Для защиты от него применяются специальные щупы, установленные на измерительные провода с усиленной поверхностью изоляции. На концах щупов предохранительными кольцами выделена запретная зона. К ней нельзя прикасаться открытыми частями тела. Иначе можно попасть под действие напряжения. Для манипуляций с измерительными щупами руками берутся за поверхность рабочей зоны. Во время измерений для подключения к схеме используют хорошо заизолированные зажимы типа «крокодил». Применять другие провода и щупы запрещено.

Во время проведения замера на всем испытуемом участке не должно быть людей. Особенно это актуально при замерах сопротивления изоляции длинномерных кабелей, протяженность которых может составить несколько километров.

Наведенное напряжение

Проходящая по проводам линий электропередач энергия обладает большим магнитным полем, которое, изменяясь по синусоидальному закону, наводит во всех металлических проводниках вторичную ЭДС и ток. Его величина на протяженных изделиях может достигать больших величин.

Этот фактор необходимо учитывать по двум причинам, связанным с:

2. безопасностью работающего персонала.

Первая причина заключается в том, что при сборке схемы для замера сопротивления изоляции через измерительный орган мегаомметра потечет ток неизвестной величины и направления, вызванный наводкой электрической энергии. Его значение добавится к показанию прибора от калиброванного напряжения генератора. В итоге две неизвестных величины тока суммируются произвольным образом и создают неразрешимую метрологическую задачу. Измерение сопротивлений электрических цепей, находящихся под любым напряжением, а не только под наведенным, поэтому вообще лишено смысла.

Вторая причина объясняется тем, что работы под наведенным напряжением могут привести к получению электрических травм и требуют строгого соблюдения правил безопасности.

Остаточный заряд

Когда генератор прибора выдает напряжение в измеряемую сеть, то между шиной электрооборудования или проводом линии и контуром земли создается разность потенциалов и образуется емкость, которая получает заряд. После разрыва цепи мегаомметра за счет отключения измерительного провода часть этого потенциала сохраняется: шина или провод обладают емкостным зарядом. Стоит только человеку прикоснуться к этому участку, как он получает электрическую травму от тока разряда через его тело. По этой причине необходимо принимать дополнительные меры безопасности и постоянно пользоваться переносным заземлением с изолированной рукояткой для безопасного снятия емкостного напряжения. Перед подключением мегаомметра к схеме, изоляция которой будет замеряться, всегда необходимо поверять отсутствие на ней напряжения или остаточного заряда. Делают это испытанным индикатором или поверенным вольтметром соответствующих номиналов. После выполнения каждого замера емкостной заряд снимается переносным заземлением с использованием изолирующей штанги и других дополнительных защитных средств.

Обычно мегаомметром необходимо выполнять много замеров. Например, чтобы сделать вывод о качестве изоляции контрольного десятижильного кабеля требуется проверить ее относительно земли и каждой жилы и между всеми жилами поочередно. При каждом замере необходимо пользоваться переносным заземлением. Для быстрой и безопасной работы один конец заземляющего проводника первоначально присоединяют к контуру заземления и оставляют в таком положении до полного завершения работ. Второй конец провода прикрепляют к изоляционной штанге и с ее помощью каждый раз накладывают заземление для снятия остаточного заряда.

Проверка изоляции кабеля мегаомметром

Сопротивление изоляционного слоя кабеля один из самых главных параметров его работоспособности. Если вы купили кабель,…

Причины плохой изоляции кабеля

Есть несколько факторов влияющих на изоляционные свойства кабелей:

  • атмосферные условия Зимой изоляция может внезапно улучшиться, т.к. имеющаяся внутри влага попросту превратится в лед.
  • процесс укладки кабеля Неосторожные движения при монтаже могут вызвать излом или повредить оболочку.
  • физический износ с течением времени
  • воздействие агрессивной среды
  • завышенное напряжение при эксплуатации

Для того чтобы вовремя выявить проблему с изоляцией, потребуется специальный прибор – мегаомметр. Данные приборы бывают старого образца (механические, где нужно вращать ручку):

и нового образца – электронные:

Рассмотрим работу этих устройств.

Проверка изоляции кабеля мегаомметром производится только на отключенном и обесточенном оборудовании.

Мегаомметр способен выдать высокое напряжение (отдельные виды до 5000 Вольт), поэтому при работе с ним строго соблюдайте следующие правила:

  • работать с прибором имеет право персонал с 3-й группой по электробезопасности
  • при испытании удалите всех посторонних от испытуемого кабеля
  • перед работой прибора внимательно осмотрите его корпус, провода и измерительные щупы. Они не должны иметь сколы, повреждения;
  • проводить замеры изоляции кабеля рекомендуется при положительных температурах
  • не прикасайтесь к проводам прибора при измерениях

Испытуемый кабель перед проверкой необходимо подготовить.

Для этого:

  • проверяете отсутствие напряжения на жилах кабеля
  • на длинных кабелях может быть наведенное или остаточное напряжение Поэтому перед каждым замером, с помощью отдельного кусочка провода или переносного заземления, в диэлектрических перчатках необходимо коснуться жилы и заземленного корпуса или контура заземления, чтобы снять этот заряд;
  • отсоединяете кабель от подключенного оборудования. Это необходимо сделать, чтобы при проверке изоляции кабеля мегаомметром, в испытании участвовал только сам кабель, без того оборудования или автоматов к которым он подключен. Отключение необходимо выполнить с двух сторон кабеля. Иногда для ускорения работы этого не делают. Сначала проводят замер, и если он показал отрицательный результат, то только после этого откидывают жилы.

Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат. Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

Для работы в мегаомах:

  • подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
  • вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
  • замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

Для работы в килоомах:

  • на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
  • Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
  • После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).

Работа с мегаомметром М4100

Бытовые сети и домашние проводки достаточно испытывать напряжением 500 Вольт. Минимальное значение, которое должна показать проверка изоляции кабеля мегаомметром в этом случае — 0,5мОм.

В промышленных эл.сетях кабели испытываются мегаомметрами на 2500 Вольт. Сопротивление изоляции при этом должно быть не меньше 10 мОм.

Работа с электронным мегаомметром

Как часто проводится проверка изоляции кабеля мегаометром?

Первый замер делается на заводе изготовителе
Перед монтажом на объекте
После монтажа перед подачей напряжения
В течение эксплуатации при выявлении дефектов или при техобслуживании один раз в три года.

{SOURCE}

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector