Как правильно подключать люминесцентную лампу

Содержание:

Подключение к электронным модулям

Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку.

В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения.

Порядок подключения люминесцентных светильников к устройству пуска и регулирования, действующего на полупроводниковых элементах: 1 – интерфейс для сети и заземления; 2 – интерфейс для светильников; 3,4 – светильники; L – фазная линия питания; N – нулевая линия; 1…6 – контакты интерфейса

На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта.

Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений.

Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений.

Разводка подключения по четырехламповому варианту. В качестве устройства запуска и регулирования также используется электронный полупроводниковый ЭПРА. На схеме 1…10 – контакты интерфейса устройства пуска и регулирования

Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп с помощью.

Это так называемые управляемые модели регуляторов. Рекомендуем подробнее ознакомиться с принципом работы регулятора мощности осветительных приборов.

Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока.

Четырехламповая конфигурация с возможностью плавной регулировки яркости свечения: 1 – переключатель режима; 2 – контакты подвода управляющего напряжения; 3 – заземляющий контакт; 4, 5, 6, 7 – люминесцентные лампы; L – фазная линия питания; N – нулевая линия; 1…20 – контакты интерфейса устройства пуска и регулирования

Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления.

Электронный балласт

Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.

Один из электронных балластов — ЭПРА

Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.

На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:

  • первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
  • третий и четвертый подаете на другую пару;
  • ко входу подаете питание.

Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).

ЭПРА для двух ламп дневного света

Преимущества электронных балластников описаны в видео.

Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.

Это тоже люминесцентные лампы, только форма другая

Источник

Варианты схем подключения

С использованием электромагнитного баланса – ЭмПРА

Главный элемент электромагнитного баланса – дроссель (своеобразный клапан), его мощность должна быть равна мощности светильника. Клапан при замыкании электродов ограничивает ток, создает уровень вольтажа, требуемый для пробоя инертного газа, поддерживает уровень разряда.

Кроме дросселя к цепочке подсоединяется стартер (неоновый источник света), питающийся от электросети сети с переменным напряжением. Его предназначение – включение прибора освещения. Для погашения искр и повышения качества неонового импульса в пускатель устанавливается небольшой конденсатор.

Пускатель подключается к контактам осветительного прибора параллельно. К свободным контактам подсоединяется дроссель, к питающим контактам — конденсатор, защищающий от помех сети и компенсирующий реактивную мощность.

Работа схемы ЭмПРА:

  • после включения ток поступает (через дроссель) на нить накаливания, потом уходит через пускатель;
  • контакты стартера и нить разогреваются;
  • ток после соединения контактов пускателя увеличивается до 3-х раз;
  • резкий скачек ускоряет разогрев электродов;
  • прибор загорается, контакты пускателя размыкаются.

Проверка работоспособности энергосберегающей лампы

Несложное тестирование позволяет своевременно выявить поломку и правильно определить основную причину неисправности, а иногда и выполнить самостоятельно наиболее простые ремонтные работы:

  • Демонтаж рассеивателя и внимательный осмотр люминесцентной трубки с целью обнаружения участков выраженного почернения. Очень быстрое почернение концов колбы свидетельствует о перегорании спирали.
  • Проверка нитей накала на предмет отсутствия разрывов при помощи стандартного мультиметра. При отсутствии повреждений нитей – показатели сопротивления могут варьироваться в пределах 9,5-9,2Om.

Если проверка лампы не показала сбоев в работе, то отсутствие функционирование может быть обусловлено поломкой дополнительных элементов, включая электронный балласт и контактную группу, которая достаточно часто подвергается окислению и нуждается в зачистке.

Проверка работоспособности дросселя осуществляется отключением стартера и замыканием на патрон. После этого нужно накоротко замкнуть патроны лампы и замерить дроссельное сопротивление. Если заменой стартера не удаётся получить желаемый результат, то основная неисправность, как правило, кроется в конденсаторе.

Блок 2

Какие бывают светодиоды?

Светодиодом называют многослойный полупроводник, который способствует преобразованию электроэнергии в свет. Если изменить его состав, то можно добиться цветного свечения. Изготавливается этот элемент на основе чипа – кристалла с местом подсоединения проводки питания.

Для того, чтобы добиться холодного (белого) свечения, голубой чип обрабатывают особым веществом желтого цвета

 Таблица 2. Разновидности светодиодов по способу сборки чипов

Вид Описание
DIP Представляет собой кристалл и расположенное в верхней части увеличительное стекло, куда подсоединяются два проводника. Это распространенный тип, который часто используется для подсветки витрин, вывесок и прочих предметов.
«Пиранья» Эта конструкция имеет сходство с предыдущим вариантом, только здесь уже имеется четыре проводника, что позволяет добиться надежности и лучшего отвода тепла из внутренней части. Чаще всего такие чипы устанавливают в автомобильных лампочках.
SMD-светодиод Находится на поверхностной части конструкции, что позволяет сократить габариты, улучшить тепловой отвод. При этом существует множество вариантов таких чипов. Применяют их в любых источниках света, независимо от назначения.
СОВ-технология Здесь чип встраивают в плату. Такое строение позволяет осуществить защиту контактов, поэтому они не окисляются при сильном нагревании — все это лучшим образом сказывается на яркости свечения. В случае неисправности светодиода, придется выполнить полную замену. Здесь уже не получится отпаять чип.

Чипы светодиодных конструкций

Из отрицательных сторон светодиодов следует отметить минимальный размер. Поэтому, чтобы создать обширное свечение, требуется использовать много таких источников, соединенных между собой. К тому же, кристалл через некоторое время изнашивается, поэтому сокращается яркость лампочек. Тем не менее, если это высококачественное изделие, то лампа долго остается яркой.

Основные функции

Классическая схема включения люминесцентных ламп


Возможно вам понравится одна из вариаций рассмотренной схемы. Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков. Наиболее дорогостоящий элемент схемы — дросселя.

Соответственно это может привести к несчастным случаям. Также можно с легкостью обыгрывать стандартные схемы подключения и избавляться от компонентов, которые неисправны. При включении более мощных трубок емкость конденсаторов стоит увеличить. Однако подчеркнём, что такие схемы позволяют некоторое время запускать даже ЛДС со сгоревшими нитями электродов.

Это аналогичный осветительный прибор, только сильно видоизмененный. По ней сразу понятно, сколько ламп к нему подключается. В данном случае используется не сетевая частота 50 Гц , а высокие частоты 20 — 60 кГц. Лампа работает.
СПОСОБ ПОДКЛЮЧЕНИЯ ЛАМПЫ ДНЕВНОГО СВЕТА БЕЗ ДРОССЕЛЯ

Электронный балласт

Принцип функционирования осветительного прибора с электронным балластом заключается в прохождении электрического тока через выпрямитель, с последующим поступлением в буферную зону конденсатора.

В электронном балласте, наряду с классическими пусковыми регулирующими устройствами, осуществление старта и стабилизации происходит посредством дросселя. Питание зависит от высокочастотного тока.

Электронный балласт

Естественное усложнение схемы сопровождается целым рядом преимуществ по сравнению с низкочастотным вариантом:

  • повышение показателей эффективности;
  • устранение эффекта мерцания;
  • снижение веса и габаритов;
  • отсутствие шумности в процессе работы;
  • повышение надежности;
  • продолжительный эксплуатационный срок.

В любом случае следует учитывать тот факт, что электронные балласты относятся к категории импульсных устройств, поэтому их включение без достаточной нагрузки является основной причиной выхода из строя.

Как устроена и работает ЛДС

Конструктивно прибор представляет собой герметичную колбу, заполненную инертным газом и парами ртути. Внутренняя поверхность колбы покрыта люминофором, а в торцы ее впаяны электроды. При подаче напряжения на электроды, между ними возникает тлеющий разряд, создающий невидимое ультрафиолетовое излучение. Это излучение воздействует на люминофор, заставляя его светиться.

Схема люминесцентной лампы

Все это ЛДС, работающие на одном принципе.

Для нормальной работы люминесцентного светильника необходимо выполнить два условия:

  1. Обеспечить начальный пробой межэлектродного промежутка (запуск).
  2. Стабилизировать ток через лампочку, чтобы тлеющий разряд не перешел в дуговой (работа).

Пуск лампы

В обычных условиях питающего напряжения недостаточно для электрического пробоя межэлектродного промежутка, поэтому пуск ЛДС возможет только с помощью дополнительных мер – разогрева электродов для начала термоэлектронной эмиссии или повышения напряжения питания до значений, достаточных для создания разряда.

До недавнего времени преимущественно использовался первый метод, для чего электроды делались (и делаются) в виде спиралей, наподобие тех, что стоят в обычных лампочках накаливания. В момент включения на спирали при помощи автоматических устройств (стартеров) подается напряжение, электроды разогреваются, обеспечивая зажигание светильника. После пуска системы стартер отключается и в процессе дальнейшей работы не участвует.

Стартеры для пуска ЛДС на различные напряжения

Позже начали появляться схемотехнические решения, не разогревающие электроды, а подающие на них повышенное напряжение. После пробоя межэлектродного промежутка напряжение автоматически снижается до номинального, и светильник переходит в рабочий режим. Для того чтобы ЛДС можно было использовать с любыми типами пусковых устройств, все они и по сей день выполняются с электродами в виде спиралей накаливания, имеющих по два вывода.

Поддержание рабочего режима

Если ЛДС напрямую включить в розетку, то начавшийся после поджига тлеющий разряд тут же перейдет в дуговой, поскольку ионизированный межэлектродный промежуток имеет очень малое сопротивление. Чтобы избежать этой ситуации, ток через прибор ограничивается специальными устройствами – балластами. Разделяются балласты на два типа:

  1. Электромагнитные (дроссельные).
  2. Электронные.

Работа электромагнитных пускорегулирующих аппаратов (ЭмПРА) основана на принципе электромагнитной индукции, а сами они представляют собой дроссели – катушки, намотанные на незамкнутом железном сердечнике. Такая конструкция обладает индуктивным сопротивлением переменному току, которое тем больше, чем выше индуктивность катушки. Дроссели различаются по мощности и рабочему напряжению, которые должны равняться мощности и напряжению используемой лампы.

Электромагнитные дроссели (балласты) для ЛДС мощностью 58 (вверху) и 18 Вт.

Электронные пускорегулирующие аппараты (ЭПРА) выполняют ту же функцию, что и электромагнитные, но ограничивают ток при помощи электронной схемы:

Электронное пускорегулирующее устройство для люминесцентной лампы

Подключение ЭПРА

Подсоединение ЭПРА (электронного пускового механизма)

Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.

В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.

Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:

  • источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
  • с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня

Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:

  1. Разобрать старую схему, удалив из нее дроссель, стартер, а также конденсаты. Внутри должны остаться лишь источник света и провода
  2. Прикрепляем подобранный по мощности ЭПРА к корпусу саморезами. Если ламп две, то мощность электронного механизма должна быть выше в 2 раза
  3. Соединяем его проводами с гнездами ламп
  4. Если сборка произведена правильно, оба источника света должны засветиться одновременно, ровным ярким светом. Гудения, естественно, быть уже не должно.

Достоинства и недостатки люминесцентных источников света

Использование ламп для тепличного выращивания растений

  • Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
  • Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.
  • Необходимость подключения дополнительных устройств (стартеров и дросселей)
  • Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
  • Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
  • На силу света в таких источниках способна влиять температура окружающей среды
  • Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
  • значительная пульсация света, что может сказаться отрицательно на зрении
  • Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных

Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.

Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.

Сравнение параметров разных источников освещения

Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.

Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.

Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:

Преимущества и недостатки

Главным плюсом люминесцентных устройств будет высокая светоотдача и отличный уровень КПД. Они дают помещению хорошую яркость, которая не портит глаза, и исправно работают спустя долгие часы.

Различные цветовые температуры, похожие по оттенку на дневной свет, помогают выбрать необходимый светильник под разнообразные задачи и для помещений любого предназначения.

Свет от таких ламп будет рассеянным. Мягкое, приятное для глаз сияние испускается не только от нити из вольфрама, но и от всего сосуда лампочки сразу.

Это позволяет применять люминесцентное освещение не только для подсветки, но и для зонирования помещения.

Срок службы люминесцентных устройств будет в диапазоне от 10000 до 20 000 часов либо до 4 лет.

Освещение для растений

Главным большим недостатком лампочек будет высокая чувствительность к температурным скачкам. Уже при температуре −15 градусов изделие будет плохо работать. При высокой жаре лампочки перестают включаться и могут сильно перегреться.

Основные способы подключения

Так как светодиодные светильники имеют разный угол обзора, то их обычно подключают по разным схемам. Выбор схемы подключения зависит прежде всего от:

  • способа крепления;
  • угла освещения светодиода;
  • количества светильников в помещении.

Всего схем подключения три:

  • последовательная;
  • параллельная;
  • лучевая.

Последовательная схема

Последовательная схема подключения светодиодных светильников проста и используется, если нет особых требований к дизайну освещения. Преимущество — экономия кабеля и простота монтажа. Все лампы подключаются по цепочке одна за другой. Однако если один из светильников выйдет из строя, погаснет все цепочка. Чтобы обнаружить неполадку, нужно будет проверять каждый из них.

Последовательная схема подключения лампы.

В одной цепи допускается соединение не больше 6 светильников или лампочек. В противном случае их яркость будет снижаться из-за роста общего сопротивления цепи.

Параллельная схема

Параллельная схема позволяет подключить светодиодный светильник каждый по отдельности. Для светильников на 12 В потребуется установка нескольких диммеров или одного на всю параллельную схему.

При схеме от выключателя тянется общий кабель, который имеет ответвление к каждой лампочке. Если один из светильников выйдет из строя, то он потухнет, не задев всю систему освещения. Неисправный прибор будет виден сразу и его можно будет быстро заменить.

Схема параллельного подключения

Этот способ более трудоемкий и требует большего количества кабеля. Однако такая схема рассчитана прежде всего на помещения с большой площадью. При таком подключении яркость света не будет зависеть от количества лампочек.

Лучевая схема

Лучевая схема подключения светодиодной лампы используется для подключения лампочек в люстрах. Она напоминает собой параллельный способ. В этой схеме кабель идет от выключателя к распределительной розетке или узлу, от которого отходят отдельные ответвления или лучи к каждой лампочке.

Если один из светодиодов перегорит, то остальные будут светиться, т.к. к каждому ведет отдельный провод.

Главным минусом этого способа подключения является трудоемкость. При использовании способа в помещении с большой площадью возможен такой прием: центральный кабель тянется в центр зала, а от него отходят лучи к каждому светильнику.

Лучевой способ подключения

Варианты подключения люминесцентных ламп

В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные.

Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп.

Простейший вариант питания светильника через электромагнитный пускорегулирующий элемент: 1 – нить накала; 2 – стартер; 3 – стеклянная колба; 4 – дроссель; L – фазная линия питания; N – нулевая линия

Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь дроссель и стартер.

Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы.

Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму.

Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно.

Вариант подключения двух люминесцентных светильников через один дроссель: 1 – фильтрующий конденсатор; 2 – дроссель, по мощности равный мощности двух приборов света; 3, 4 – лампы; 5,6 – стартеры запуска; L – фазная линия питания; N – нулевая линия

На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников.

Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА.

Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя.

Как подключить лампу

Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.

Подключение с использованием электромагнитного балласта

Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.

Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.


Подключение при помощи ЭмПРА.

Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:

  • значительный расход электроэнергии;
  • длительный запуск, который может занимать 3 с;
  • схема не способна функционировать в условиях пониженных температур;
  • нежелательное стробоскопическое мигание, негативно влияющее на зрение;
  • дроссельные пластинки по мере износа могут издавать гудение.

Две трубки и два дросселя

В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.

Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.

Схема с двумя трубками и двумя дросселями.

От стартера контакт идет к лампе, а свободный полюс — к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.

Схема подключения двух ламп от одного дросселя

Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.

Схема подключения двух светильников от одного дросселя.

Электронный балласт

Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.

Поступающий на нагрузку ток выпрямляется через диодный мост. При этом напряжение сглаживается, а конденсаторы гарантируют стабильную подачу электроэнергии.

Подключение с помощью электронного балласта.

Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.

Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.

Использование умножителей напряжения

Использование умножителей напряжения.

Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.

Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для  его стабилизации используются конденсаторы.

Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость

Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.

Подключение без стартера

Схема подключения без стартера.

Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.

Выбор драйвера

Выбор драйвера во многом определяет место, где планируется установка светильника.

Например, в условиях складского помещения для светильника понадобится драйвер с рабочей температурой выше 0◦С и степенью влагостойкости от IP 20

Если освещать будем офис или любое другое административное помещение, где работают люди и нужна высокая освещаемость, то в таком случае надо брать во внимание и коэффициент пульсации: он не должен быть выше 5%. Границы входящего напряжения зависят от конкретных условий

Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети. В этом случае понадобится источник питания с универсальным входом.

Блоки питания и драйверы для светодиодных светильников

Напряжение в сети офисных помещений обычно стабильно, и стандартного диапазона входных напряжений бывает более чем достаточно. Но в любом случае светодиодный светильник нуждается в корректоре коэффициента мощности, потому что прибавочная мощность оказывается выше порога в 25 Ватт. Есть модели, рассчитанные на внутреннее освещение. Это модели светильников PLD-40 и PLD-60. Их коэффициент пульсации не выше 20%, а значит, они подойдут для освещения помещений, не требовательных к яркому освещению. Драйверы таких моделей защищены от короткого замыкания и перегревов, а также имеют полное соответствие требованиям электромагнитной совместимости. Таким образом, примеры моделей PLD-40 и PLD-60 продемонстрировали нам прекрасное соответствие для стандартных светильников без регулировки освещения.

Блок питания PLD-60-1050B для внутреннего светодиодного освещения

Требования к драйверам в зависимости от назначения светильника:

Если светильник устанавливается для наружного освещения, то главное требование для его драйвера – это широкий диапазон переносимых температур, гарантирующих исправную работу после длительного нахождения на морозе.

Герметичный контроллер с драйвером светодиодного светильника

Блок питания (кроме того, что он должен быть защищен указанным способом) должен обладать широким диапазоном входного напряжения ввиду того, что линии питания весьма нестабильны. Он должен быть надежно защищен от перепадов напряжения.

Если светильник устанавливается для освещения дорог, железной дороги, метро, то драйвер у такого светильника должен обладать виброустойчивостью. Этому способствует компаунд, который залит в блоки питания, что позволяет ему не воспринимать вибрации. В противном случае элементы просто отвалятся от платы при первой же вибрационной атаке.

От качества выполнения деталей драйвера зависят все параметры и возможности светильника. Среди них и такие важные, как уровень пульсации, диапазон рабочих температур, устойчивость к скачкам напряжения, температурный диапазон

Вот почему так важно качество комплектующих этого прибора. Как известно, светодиодный светильник led сам по себе является очень надежным осветительным прибором, отличающимся долговечностью

Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах. Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector