Особенности утепления опилками

Содержание:

Гипсокартон с минимальной теплопроводностью

Последнее время на рынке появился новый материал – “теплый гипсокартон”. Он выпускается нескольких видов. Утеплитель приклеивают к одному листу ГКЛ либо закреплен между двумя. Используется как для наружных, так и внутренних работ. Толщина плит с одним слоем достигает 60 мм, двухслойный до 100 мм, размер 1200 х 2500 мм. Основная сфера применения: быстровозводимые конструкции, летние дачные дома, подсобные помещения. Внутри зданий его приклеивают к стенам. В качестве утеплителя чаще используют полистирол, толщина слоя варьируется в зависимости от его ширины. Основным преимуществом материала является низкая теплопроводность и высокая скорость монтажа.

Теплопроводность гипсокартона Кнауф

Коэффициент продукции компании Кнауф имеет показатель 0,15 единиц. Если сравнивать с другими материалами, то он будет значительно ниже. Например, железобетон имеет теплопроводность в 1,5 единиц, а дерево (то же самое для фанеры и других отделочных материалов из дерева), он составляет также 0,15 единиц. В то же время для сухой штукатурки данный коэффициент определяется как 0,21-0,9 единиц (в зависимости от типа штукатурки). Все примерные показатели (для фанеры, штукатурки и других материалов) приведены в сводной таблице.

Руководствуясь данной таблицей можно определить, что гипсокартон, в отличие от фанеры, штукатурки и других отделочных материалов имеет наиболее низкий показатель по теплопроводности. Поэтому отделка стен гипсокартоном фирмы Кнауф или отечественного производителя, даже без использования дополнительных материалов по утеплению, дадут отличный результат по теплоизоляции помещения. А вот использование фанеры и другой отделки покажет себя в данной ситуации хуже.

Чтобы добиться отличной теплоизоляции комнаты специалисты советуют соединять гипсокартон с различными утеплителями. В данном случае сделать это будет намного легче, так как монтаж гипсокартона предполагает сборку металлического каркаса, в который можно очень удобно и быстро поместить утеплитель.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

  В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06    
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063    
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073    
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1    
Пеноблок 100 — 120 кг/м3 0,043-0,045    
Пеноблок 121- 170 кг/м3 0,05-0,062    
Пеноблок 171 — 220 кг/м3 0,057-0,063    
Пеноблок 221 — 270 кг/м3 0,073    
Эковата 0,037-0,042    
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038    
Вакуум    
Воздух +27°C. 1 атм 0,026    
Ксенон 0,0057    
Аргон 0,0177    
Аэрогель (Aspen aerogels) 0,014-0,021    
Шлаковата 0,05    
Вермикулит 0,064-0,074    
Вспененный каучук 0,033    
Пробка листы 220 кг/м3 0,035    
Пробка листы 260 кг/м3 0,05    
Базальтовые маты, холсты 0,03-0,04    
Пакля 0,05    
Перлит, 200 кг/м3 0,05    
Перлит вспученный, 100 кг/м3 0,06    
Плиты льняные изоляционные, 250 кг/м3 0,054    
Полистиролбетон, 150-500 кг/м3 0,052-0,145    
Пробка гранулированная, 45 кг/м3 0,038    
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096    
Пробковое покрытие для пола, 540 кг/м3 0,078    
Пробка техническая, 50 кг/м3 0,037    

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Основные характеристики опилок

Есть несколько характеристик, которые помогают сравнить различные утеплители и выбрать из них тот, что лучше других подходит к конкретной ситуации.

Вот эти характеристики:

  • стоимость (без учета доставки);
  • теплопроводность;
  • паропроницаемость;
  • стойкость к высокой влажности и конденсату;
  • срок службы.

Стоимость – один из важнейших параметров, особенно если приходится утеплять большую площадь. Ведь стоимость 1м2 самого дешевого современного материала, даже без учета затрат на доставку, превышает 150 рублей.

Поэтому при утеплении большого дома затраты только на покупку утеплителя составляют сотни тысяч рублей. Опилки обходятся гораздо дешевле.

Более подробно об их стоимости вы можете прочитать тут.

Теплопроводность – еще один важный параметр, от которого зависит толщина слоя, необходимого для снижения теплопотерь до заданного уровня.

По этому параметру опилки уступают всем современным утеплителям, но ведь можно немного увеличить толщину слоя и довести теплопотери до заданного уровня.

По теплопроводности 10 см отходов распиливания древесины соответствуют слою минеральной ваты толщиной 8–9 см и слою пенопласта толщиной 7 см.

Паропроницаемость – это способность материала пропускать через себя водяной пар. Такая характеристика очень важна для материалов, которые используют для снижения теплопотерь дышащих домов, построенных из древесины или пустотелого глиняного кирпича.

По этому параметру опилки оставляют далеко позади любые другие материалы, ведь из всех современных утеплителей только минеральная вата хоть немного, но пропускает пар. Остальные же материалы полностью блокируют этот процесс, из-за чего микроклимат в доме меняется не в лучшую сторону.

Стойкость к высокой влажности и выпадению конденсата важна для любого утепляющего материала, ведь влажность всегда присутствует в воздухе, а конденсат выпадает при перепаде температур.

Древесные опилки впитывают избыток влаги, а через некоторое время, когда влажность воздуха падает, выпускают пар из себя. Поэтому им влажность навредить не сможет, чего нельзя сказать о минеральной вате, которая хоть немного намокнув, резко теряет свои теплоизоляционные свойства.

Реальный срок службы материала можно определить лишь по его состоянию через какое-то время.

Пенопласт, полистирол и пенополиуретан редко выдерживают 30 лет, ведь их разрушают кислород и ультрафиолет, минеральная вата выдерживает лет 50–70, а опилки легко переносят срок службы в 150 лет.

В России и других странах встречаются дома, построенные в начале и середине XIX века и утепленные опилками. Несмотря на столь солидный возраст, опилочный утеплитель находится в прекрасном состоянии и не требует ни ремонта, ни замены.

Все это позволяет сделать однозначный вывод – по совокупности характеристик древесные опилки ничуть не уступают любому современному утепляющему материалу, а при правильном применении заметно превосходят их.

Советы и рекомендации по выбору материалов

  1. Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
  2. Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.
  3. Прежде, чем приступать к укладке утеплителя, убедитесь, что поверхность стены или перекрытия не имеет влаги. В противном случае через время между поверхностями образуется плесень.
  4. Если вы планируете монтировать невлагостойкий материал на внешней стене, позаботьтесь о тщательной обработке гидроизоляционным клеем.
  5. Не стоит производить внутреннее утепление поверхностей синтетическими материалами. Это негативно скажется на вашем здоровье.

Материалы из бетона с добавлением пористых заполнителей

Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:

Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.

Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м 3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.

Презентация на тему Что такое теплопроводность. ТЕПЛОПРОВОДНОСТЬ — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия. Транскрипт

1

Что такое теплопроводность?

2

ТЕПЛОПРОВОДНОСТЬ — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.). Приводит к выравниванию температуры тела. Не сопровождается переносом вещества! Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей, газов. Теплопроводность различных веществ разная. Существует зависимость теплопроводности от плотности вещества.

3

Процесс передачи теплоты от более нагретых тел менее нагретым называется теплопередачей.

4

Попробуем опустить в горячую воду, налитую в небольшой сосуд, кусочек льда. Через некоторое время температура льда начнет повышаться и он растает, а температура окружающей воды понизится. Если опустить горячую ложку в холодную воду, то окажется, что температура ложки начнет понижаться, температура воды повышаться и через некоторое время температура воды и ложки станет одинаковой А теперь опустим в горячую воду деревянную палочку. Можно сразу заметить, что деревянная палочка нагревается значительно медленнее металлической ложки.Отсюда можно сделать вывод, что тела, сделанные из разных веществ, обладают разной теплопроводностью.

5

Теплопроводность различных веществ разная. Металлы обладают самой высокой теплопроводностью, причем у разных металлов теплопроводность отличается. Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости. При нагревании верхнего конца закрытой пальцем пробирки с воздухом внутри можно не бояться обжечь палец, т.к. теплопроводность газов очень низкая.

6

Вещества с низкой теплопроводностью используют в качестве теплоизоляторов. Теплоизоляторы это вещества, плохо проводящие тепло. Воздух является хорошим теплоизолятором, поэтому оконные рамы делают с двойными стеклами, для того чтобы между ними был слой воздуха. Хорошими теплоизолирующими свойствами обладают дерево и различные пластмассы

Можно обратить внимание на то, что ручки чайников делают именно из этих материалов, для того чтобы не обжечь руки, когда чайник горячий

7

Для создания теплой одежды широко используют вещества, плохо проводящие тепло, такие как войлок, мех, вата, перья и пух различных птиц. Такая одежда помогает сохранять тепло тела. Войлочные и ватные рукавицы используют при работе с горячими предметами, например для того, чтобы снимать с плиты горячие кастрюли. Все металлы, стекло, вода хорошо проводят тепло и являются плохими теплоизоляторами. Тряпкой, смоченной в воде, ни в коем случае нельзя снимать горячие предметы. Вода, содержащаяся в тряпке, мгновенно нагреется и обожжет руку. Знания о способности разных материалов по- разному передавать тепло помогут в походе. Например, чтобы не обжечься о горячую металлическую кружку, ее ручку можно обмотать изоляционной лентой, которая является хорошим теплоизолятором. Для того чтобы снять с костра горячий котелок, можно воспользоваться войлочными, ватными или брезентовыми рукавицами.

8

На кухне, поднимая горячую посуду, чтобы не обжечься, можно использовать только сухую тряпку. Теплопроводность воздуха намного меньше, чем у воды! А ткань структура очень рыхлая, и все промежутки между волокнами заполнены у сухой тряпки воздухом, а у влажной — водой

9

Куропатки, утки и другие птицы зимой не мерзнут потому, что температура лап у них может отличаться от температуры тела более чем на 30 градусов. Низкая температура лап сильно понижает теплоотдачу. Таковы защитные силы организма! ЕСЛИ положить на лежащие рядом на столе кусок пенопласта (или дерева) и зеркало ладони, то ощущения от этих предметов будут разными: пенопласт покажется теплее, а зеркало — холоднее. Почему? Ведь температура окружающего воздуха одинаковая! Стекло — хороший проводник тепла (обладает высокой теплопроводностью), и сразу начнет «отбирать» от руки тепло. Рука будет ощущать холод! Пенопласт хуже проводит тепло. Он тоже будет, нагреваясь, «отбирать» тепло у руки, но медленнее, поэтому и покажется теплее.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность

Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Сравнение проводимости тепла у самых распространённых утеплителей

Чтобы иметь представление о проводимости тепла разных материалов, предназначенных для утепления, нужно сравнить их коэффициенты (Вт/м*К), приведённые в следующей таблице:

Как видно из вышеприведённых данных, показатель проводимости тепла таких строительных материалов, как теплоизоляционные, варьируется от минимального (0,019) до максимального (0,5). Все теплоизоляционные материалы имеют определённый разброс показаний. СНиПы описывают каждый из них в нескольких видах – в сухом, нормальном и влажном. Минимальный коэффициент проводимости тепла соответствует сухому состоянию, максимальный – влажному.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана;
e{\displaystyle e} — заряд электрона;
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как

ϰ=ik3π32d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Альтернативные виды

Несмотря на то, что любой бизнес нацелен на получение прибыли, опилки можно использовать и без получения прямой прибыли. Например, можно с их помощью отапливать помещение цеха или пилорамы.

Это не приведет к прямой прибыли, зато вы не только избавитесь от отходов, но и серьезно снизите затраты на отопление, что в какой-то мере тоже прибыль.

Еще один способ альтернативного бизнеса – производство пиролизного газа, ведь его можно использовать для питания автомобилей и тракторов, а также для газовых электрогенераторов.

Теплотворная способность пиролизного газа почти вполовину меньше, чем у метана, пропана или бутана, поэтому двигатели внутреннего сгорания, работающие на нем, выдают 30–45% максимальной мощности.

Учитывая, что в обычных режимах мотор редко выдает свыше 10% мощности, пиролизный газ обеспечивает его нормальную работу. Использование газогенераторов на опилках приведет к серьезному снижению расходов на топливо.

Третий альтернативный способ применения – создание биотоплива. По российским законам продавать спиртосодержащие жидкости без очень дорогой лицензии запрещено, но никто не мешает заправлять спиртом автомобили своей фирмы.

Еще один способ применения отходов – создание арболитовых и опилкобетонных блоков для строительства новых помещений. Ведь при расширении производства основные затраты уходят на стройматериалы, то есть кирпич, шлакоблоки и так далее.

Самостоятельное изготовление блоков позволит снизить затраты на стройматериалы более чем в 2 раза, к тому же, для такого производства не требуется больших финансовых вложений. Вибростанок для изготовления блоков можно взять за 10–15 тысяч рублей, а покупка бетономешалки обойдется в 5–15 тысяч рублей.

Древесная Вата

   Для описания этого и следующих видов утеплителя я использую рекламную информацию фирмы STEICO, не потому, что я её продаю, или получил деньги за рекламу=), а потому что призводителей этой продукции не так много, а проверенной информации ещё меньше. Тут я, по крайней мере, буду использовать информацию непосредственно от производителя. Моя цель — обзор разнообразных видов утеплителей. 

Презентационный каталог можно посмотреть здесь — полная информация от производства, ассортимента, характеристик и до сертификатов.  Итак:

    STEICO WoodFlex – материал из натурального древесного волокна черпает свои отличные изоляционные свойства из самой природы. Так же, как и древесина, маты WoodFlex имеют высокий коэффициент удельной теплоемкости (2100 Дж/кг·К). Это практически в два раза превышает подобный показатель для минеральной ваты. Благодаря этому каждое отдельное древесное волокно, из которого изготавливается WoodFlex, может сохранять большое количество тепла. Чтобы тепло сохранялось как можно дольше, древесная вата WoodFlex  имеет высокую плотность (до 50 кг/м³).  Сочетание свойств, таких как: низкий коэффициент теплопроводности (λ=0,038 Вт/м·К), значительный коэффициент теплоемкости наряду с высокой плотностью материала придают WoodFlex уникальную способность защиты помещений от потери тепла зимой и нагрева крыши и стен летом, даже в самые жаркие дни.

   Кроме хороших теплоизоляционных способностей, древесные волокна материала WoodFlex способны впитывать и испарять влагу в объемах, составляющих до 20% от собственного веса, без потери теплоизолирующих свойств, тем самым регулируя микроклимат в помещении. Для WoodFlex эта величина может достигать 10 л/м³ влаги. 

   Важно отметить, что в разрезе большинство изоляционных материалов выглядят идентично: соединенные между собой волокна (стеклянные, каменные, древесные), образующие в материале воздушные поры. При контакте с влагой механизм поведения разных видов изоляции несколько различается и приводит к интересному результату

Как известно, стекло и камень имеют ограниченную способность к абсорбции влаги. В дополнение к этому поглощенные стеклянными и каменными волокнами пары воды снижают у этих материалов значение величины λ, за которое собственно и платил деньги потребитель. В случае с WoodFlex, влага впитывается древесными волокнами, а воздушные поры между ними остаются неизменными. В результате потребитель получает длительный и стабильный «теплоизоляционный комфорт» на многие годы.

Основные характеристики следующие:

  • Эластичные маты для теплоизоляции, не оседающие со временем вследствие высокой плотности;

  • Имеет низкий коэффициент теплопроводности (λ=0,038 Вт/м·К)

  • Характеризуется простотой установки, плотно заполняет пространство между конструктивными и инженерными элементами;

  • Обладает хорошим сопротивлением сжатию;

  • Благодаря эластичности, WoodFlex  при расширении плотно заполняет полости, в которые его помещают;

  • Препятствует образованию «тепловых мостиков»;

  • Вследствие высокой теплоемкости проявляет идеальные изоляционные свойства зимой и летом (2100 Дж/кг·К);

  • Диффузионно открытые маты, благодаря способности адсорбции избыточной влаги (паров) регулируют микроклимат в помещениях, не утрачивая при этом изоляционных свойств (до 20% от собственного веса);

  • Высокая плотность и особенности структуры древесных волокон придают WoodFlex хорошие звукоизоляционные свойства (до 50 кг/м³);

  • Материал не вызывает аллергию и не раздражает глаза и кожу;

  • Не содержит химических добавок, отсутствует эмиссия формальдегида;

  • Не распространяют огонь. В случае возгорания образующаяся зола перекрывает доступ кислорода;

  • Экологически чистый продукт способный к вторичной переработке.

Гипсокартон для утепления помещения

Использование гипсокартона в целях утепления помещения имеет следующие преимущества:

  • коэффициент теплопроводности ГКЛ довольно близок к аналогичному показателю для дерева. Это обстоятельство позволяет создать в комнате, обшитой гипсокартоном, ощущение тепла и комфорта;
  • возможность поместить под листы различные варианты утеплителей для создания большей теплоизоляции;
  • возможность замаскировать все неровности и искривления, имеющиеся на бетонных перекрытиях;
  • возможность обойтись без жидкого выравнивания стен с помощью штукатурки.

Однако, если используется бескаркасный метод монтажа листов на стены, вы не сможете добиться большей части вышеперечисленных моментов. Это связанно с тем, что хоть теплопроводность самого материала останется неизменной, но в данном случае скажется отсутствие воздушной прослойки. В результате потери тепла будут несколько увеличены.

В целом, благодаря правильной технологии монтажа, а также уникальным свойствам гипсокартона, с его помощью за небольшие деньги и небольшой промежуток времени можно добиться отличной теплоизоляции. Отменные показатели теплопроводности гипсокартона в сочетании с утеплителями дадут отличный результат.

При покупке ГКЛ необходимо быть очень внимательным и ознакомиться с техническими характеристиками, так как для каждой отдельной ситуации подойдет не только определенный тип плит, но и определенные свойства (теплопроводность, состав и т.д.).

Одним из достоинств является низкая теплопроводность гипсокартона. Плиты ГКЛ “дышат”, то есть впитывают и отдают влагу. Плиты ГКЛ отвечают экологическим нормам, состоят в основном из сухого гипса, крахмала и бумаги. Они обеспечивают довольно хорошую теплоизоляцию и комфортную температуру в помещении.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Кирпичи и блоки своими руками

Традиционно раствор замешивают в яме, выкопанной неподалеку от места складирования готовых блоков, поэтому мы рекомендуем поступать так же.

Вот порядок действий, необходимый для того, чтобы самостоятельно сделать саманные блоки:

  1. Выкопайте в земле яму (размер ямы зависит от количества тех, кто будет участвовать в замесе) с ровными стенками и дном.
  2. Зашейте яму доской или застелите толстым полиэтиленом, чтобы предотвратить потерю воды.
  3. Глину измельчите до комочков размером в 1–2 мм и засыпьте в яму.
  4. Залейте глину водой.
  5. Чтобы ускорить растворение глины, надевайте резиновые сапоги и ходите по дну ямы, перемешивая раствор.
  6. Когда раствор будет готов, добавляйте в него песок и солому, а также другие компоненты и тщательно перемешивайте ногами. Не высыпайте все материалы сразу, а добавляйте небольшими порциями, постепенно втаптывая их в основной раствор.
  7. Сделайте из досок или железа несколько одинаковых форм.
  8. Готовую смесь руками накладывайте в формы и утрамбовывайте любым удобным способом.
  9. Относите форму на площадку для временного хранения блоков и там вытаскивайте заготовку блока для первичной сушки. Если смесь изготовлена правильно, то блок легко выходит из формы.
  10. Через 3–7 дней переносите кирпичи или блоки на место долговременной сушки, а еще через месяц на место хранения.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector