Единицы измерения тепловой энергии отопления

Холодная вода

На источнике существует несколько ситуаций с обеспечением нужного количества холодной воды (ХВ) для подпитки. Наиболее простая ситуация, когда ХВ поступает из одного источника по одному трубопроводу. Тогда параметры ХВ измеряются в одной точке и не возникает каких-либо трудностей с расчётом энтальпии холодной воды.

Более сложная ситуация, когда существует один источник ХВ, но несколько трубопроводов, по которым вода поступает на источник. Если любой трубопровод в любой момент времени может отключаться, то необходимы специальные аппаратные средства и алгоритмы определения энтальпии ХВ в работающем трубопроводе.

Если же на источнике тепловой энергии существует несколько источников ХВ (например, питьевая вода, техническая вода, вода из артезианских скважин) и вода из них поступает в коллектор ХВ с разной температурой, то для определения энтальпии холодной воды в коллекторе необходимо знать по каждому источнику холодной воды не только температуру, но и расход для определения средневзвешенной по расходу энтальпии ХВ в коллекторе.

Российские термоячейки

Ученые Национального исследовательского технологического университета МИСиС (НИИТУ «МИСиС») разработали новый тип энергоэффективных устройств – термохимических ячеек (термоячеек), превращающих тепло в электрическую энергию. Об этом говорится в пресс-релизе, опубликованном на официальном сайте университета.

Технология, предложенная российскими специалистами, как ожидается, позволит выпускать компактные элементы питания. Их можно будет размещать практически на любой поверхности – к примеру, на одежде, и использовать для выработки электрического тока за счет разницы в температурах человеческого тела и окружающей среды. Полученную энергию можно будет направить на подпитку различных мобильных устройств.

Работа термоячеек основывается на эффекте Зеебека. Эффект Зеебека, открытый в 1821 г. немецким физиком Томасом Зеебеком (Thomas Seebeck), заключается в том, что в замкнутой цепи, состоящей из разнородных проводников, возникает электродвижущая сила (ЭДС), если места контактов поддерживают при разных температурах. Термоэлектричество в НИИТУ «МИСиС» называют одним из самых перспективных направлений «зеленой энергетики». Серьезным недостатком уже существующих современных образцов термоячеек является их низкая выходная мощность. Это существенно ограничивает область их применения.

В России разработаны термоячейки для питания мобильной электроники от тепла человеческого тела

Новые термоячейки, разработанные россиянами, состоят из оксидно-металлических электродов на основе полых никелевых микросфер и водного электролита. Такая комбинация, по словам специалистов, позволяет повысить ток, одновременно снижая внутреннее сопротивление элемента, получив на выходе увеличение мощности в 10-20 раз по сравнению с аналогами – напряжение разомкнутой цепи может достигать 0,2 В при температуре электрода до 85 градусов Цельсия. Кроме того, использование водного электролита снижает стоимость производства и повышает безопасность системы. По словам одного из авторов работы, ведущего эксперта кафедры ФНСиВТМ НИТУ «МИСиС» Игоря Бурмистрова, был достигнут рекордный (4,5 мВ/К) для водных электролитов показатель гипотетического коэффициента Зеебека (термоэлектрической чувствительности), а также выявлено нетипичное для термоячеек нелинейное изменение вольт-амперных характеристик, обеспечивающее рост коэффициента полезного действия (КПД) устройства.

Устройство и принцип работы термоячейки

Результаты работы российских ученых опубликованы в британском журнале Renewable Energy. В будущем специалисты планируют добиться повышения выходной мощности за счет оптимизации состава электродного материала и улучшения конструкции термоячейки. В перспективе же можно создать суперконденсатор, который бы сохранял в себе заряд длительное время.

О методике анализа

Выше приведен сравнительный анализ финансового положения и результатов деятельности организации.
В качестве базы для сравнения взята официальная бухгалтерская отчетность организаций Российской Федерации за 2018,
представленная в базе данных ФНС (2.1 млн. организаций).
Сравнение выполняется по 9 ключевым финансовым коэффициентам (см. таблицу выше).
Сравнение финансовых коэффициентов организации производится с медианным значением показателей всех организаций РФ и организаций в рамках отрасли,
а также с квартилями данных значений. В зависимости от попадания каждого значения в квартиль присваивается
балл от -2 до +2 (-2 – 1-й квартиль, -1 – 2-й квартиль, +1 – 3-й квартиль; +2 – 4-й квартиль;
0 – значение отклоняется от медианы не более чем на 5% разницы между медианой и квартилем, в который попало значение показателя).
Для формирования вывода по результатам анализа баллы обобщаются с равным весом каждого показателя,
в итоге также получается оценка от -2 до +2:

значительно лучше (+1 — +2вкл)
лучше (от 0.11 до +1вкл)
примерно соответствует (от -0.11вкл до +0.11вкл)
хуже (от -1вкл до -0.11)
значительно хуже (от -2вкл до -1)

Изменение за год вычисляется путем сравнения итогового балла финансового состояния в рамках отрасли за текущий год с баллом за предыдущий год.
Результат сравнения может быть следующим:

значительно улучшилось (положительное изменение более чем на 1 балл).
улучшилось (положительное изменение менее чем 1 балл);
не изменилось (балл не изменился или изменился незначительно, не более чем на 0,11);
ухудшилось (ухудшение за год менее чем на 1 балл);
значительно ухудшилось (ухудшение за год более чем на 1 балл);

Источник исходных данных: При анализе использованы официальные данные Росстата и ФНС,
публикуемые в соответствии с законодательством Российской Федерации. Если вам доступен оригинал бухгалтерской отчетности,
рекомендуем сверить его с отчетностью ООО «Энергия Тепла» по данным ФНС, чтобы исключить опечатки и неточности возможные при занесении отчетности в электронную базу налогового ведомства.

Нужен официальный отчет? Если вам требуется письменное заключение по результатам сравнительного анализа,
пишите нам, мы подготовим детальный отчет аудиторской фирмы (услугу оказывают аттестованные аудиторы на платной основе).

Внимание: Представленный анализ не свидетельствует о плохом или хорошем финансовом состоянии организации,
а дает его характеристику относительно других российских предприятий. Для детального финансового анализа воспользуйтесь
программой «Ваш финансовый аналитик»
— загрузить данные в программу >>

Технология сплава на границе растворимости

Сплавы на границе растворимости основаны на изменении фазы металла с целью хранения тепловой энергии.

Вместо того, чтобы перекачивать жидкий металл между емкостями, как в системе с расплавом солей, металл заключается в капсулу из другого металла, с которым не может сплавиться (не поддающийся смешению). В зависимости от выбора двух материалов (материал, меняющий фазу и материал капсулы), плотность хранения энергия может оставлять 0,2-2 МДж/л.

Рабочая среда, как правило – вода или пар, используется для передачи тепла к и от сплава на границе растворимости. Теплопроводность таких сплавов зачастую выше (до 400 Вт/м*К), чем у конкурирующих технологий, что означает более быструю возможную «загрузки» и «разгрузки» теплового хранилища. Технология еще не реализована для использования в промышленных масштабах.

Расчет мощности котла и теплопотерь.

Собрав все необходимые показатели, приступайте к калькуляции. Конечный результат укажет количество расходуемого тепла и сориентирует вас на выбор котла. При расчете теплопотерь за основу берутся 2 величины:

  1. Разница температуры снаружи и внутри здания (ΔT);
  2. Теплозащитные свойства объектов дома (R);

Для выявления расхода тепла ознакомимся с показателями сопротивления теплопередачи некоторых материалов

Таблица 1. Теплозащитные свойства стен

Материал и толщина стены

Сопротивление теплопередаче

Кирпичная стена

толщина в 3 кирпича (79 сантиметров)

толщина в 2.5 кирпича (67 сантиметров)

толщина в 2 кирпича (54 сантиметров)

толщина в 1 кирпича (25 сантиметров)

 

0.592

0.502

0.405

0.187

Сруб из бревна

Ø 25

Ø 20

 

0.550

0.440

Сруб из бруса

Толщина 20см.

Толщина 10см.

 

0.806

0.353

Каркасная стена

(доска +минвата + доска) 20 см.

 

0.703

Стена из пенобетона

20см.

30см.

 

0.476

0.709

Штукатурка (2-3 см) 0.035
Потолочное перекрытие 1.43
Деревянные полы 1.85
Двойные деревянные двери 0.21

Данные в таблице указаны с температурной разницей 50 °(на улице -30°,а в помещение +20°)

Таблица 2. Тепловые расходы окон

Тип окна RT q. Вт/ Q. Вт
Обычное окно с двойными рамами 0.37 135 216
Стеклопакет (толщина стекла 4 мм)

4-16-4

4-Ar16-4

4-16-4К

4-Ar16-4К

 

0.32

0.34

0.53

0.59

 

156

147

94

85

 

250

235

151

136

Двухкамерный стеклопакет

4-6-4-6-4

4-Ar6-4-Ar6-4

4-6-4-6-4К

4-Ar6-4-Ar6-4К

4-8-4-8-4

4-Ar8-4-Ar8-4

4-8-4-8-4К

4-Ar8-4-Ar8-4К

4-10-4-10-4

4-Ar10-4-Ar10-4

4-10-4-10-4К

4-Ar10-4-Ar10-4К

4-12-4-12-4

4-Ar12-4-Ar12-4

4-12-4-12-4К

4-Ar12-4-Ar12-4К

4-16-4-16-4

4-Ar16-4-Ar16-4

4-16-4-16-4К

4-Ar16-4-Ar16-4К

 

0.42

0.44

0.53

0.60

0.45

0.47

0.55

0.67

0.47

0.49

0.58

0.65

0.49

0.52

0.61

0.68

0.52

0.55

0.65

0.72

 

119

114

94

83

111

106

91

81

106

102

86

77

102

96

82

73

96

91

77

69

 

190

182

151

133

178

170

146

131

170

163

138

123

163

154

131

117

154

146

123

111

RT — сопротивление теплопередачи;

  1. Вт/м^2 – количество тепла, которое расходуется на один кв. м. окна;

четные цифры указывают на воздушное пространство в мм;

Ar — зазор в стеклопакете заполнен аргоном;

К – окно имеет наружное тепловое покрытие.

Имея в наличии стандартные данные о теплозащитных свойствах материалов, и определив перепад температур легко рассчитать тепловые потери. На пример:

Снаружи — 20°С., а внутри +20°С. Стены построены из бревна диаметром 25см. В этом случае

R = 0.550 °С· м2/ Вт. Тепловой расход будет равен 40/0.550=73 Вт/ м2

Теперь можно приступить к выбору источника тепла. Существуют несколько видов котлов:

  • Электрические котлы;
  • Газовые котлы
  • Нагреватели на твердом и жидком топливе
  • Гибридные (электрические и на твердом топливе)

Перед тем как приобрести котел, вы должны знать, какая мощность потребуется для поддержания благоприятной температуры в доме. Для этого существуют два способа определения:

  1. Расчет мощности по площади помещений.

По статистике принято считать, что для нагрева 10 м2 требуется 1 кВт теплоэнергии. Формула применима в случае, когда высота потолка не более 2,8 м и дом средне утеплен. Суммируем площадь всех комнат.

Получаем, что W=S×Wуд/10, где W- мощность теплогенератора, S-общая площадь здания, а Wуд является удельной мощность, которая в каждом климатическом поясе своя. В южных регионах она 0,7-0,9 кВт, в центральных 1-1,5 кВт, а на севере от 1,5 кВт до 2 кВт. Допустим, котел в доме площадью 150 кв.м, который находится в средних широтах должен обладать мощностью 18-20кВт. Если потолки выше стандартных 2,7м, например, 3м, в этом случае 3÷2,7×20=23 (округляем)

  1. Расчет мощности по объему помещений.

Этот тип вычислений можно произвести, придерживаясь строительных норм и правил. В СНиП прописан расчет мощности отопления в квартире. Для кирпичного дома на 1 м3 приходится 34 Вт, а в панельном – 41 Вт. Объем жилья определяется умножением площади на высоту потолка. Например, площадь апартаментов 72 кв.м., а высота потолков 2,8 м. Объем будет равен 201,6 м3. Так, для квартиры в кирпичном доме мощность котла будет равна 6,85 кВт и 8,26 кВт в панельном. Правка возможна в следующих случаях:

  • На 0.7, когда этажом выше или ниже находится неотапливаемая квартира;
  • На 0.9, если ваша квартира на первом или последнем этаже;
  • Коррекция производится при наличии одной внешней стены на 1,1, две – на 1,2.

Накопление тепла в горячей породе, бетоне, гальке и т.д.

Вода обладает одной из самых высоких теплоемкостей – 4,2 Дж/см3*К, тогда как бетон обладает лишь одной третью от этого значения. С другой стороны, бетон может нагреваться до гораздо более высоких температур – 1200C за счет, например, электронагрева и, таким образом, обладает гораздо большей общей емкостью. Следуя из примера далее, изолированный куб примерно 2,8 м в поперечнике может оказаться способным обеспечивать достаточный объем хранимого тепла для одного дома, чтобы удовлетворить 50 % потребности в отоплении. В принципе, это может быть использовано для хранения избыточной ветряной или фотоэлектрической тепловой энергии благодаря способности электронагрева к достижению высоких температур

На уровне округов международное внимание привлек проект «Виггенхаузен-Зюд» в немецком городе Фридрисхафене. Это – железобетонный теплоаккумулятор объемом в 12 000 м3 (420 000 куб.фт.), соединенный с комплексом солнечных коллекторов площадью 4 300 м2 (46 000 квадр

фт), наполовину обеспечивающих потребность в горячей воде и отоплении у 570 домов. Компания «Siemens» строит под Гамбургом хранилище тепла емкостью 36 МВТ*ч, состоящее из базальта, разогретого до 600C, и выработкой энергии в 1,5 МВт. Схожая система планируется для постройки в датском городе Сорё, где 41-58 % накопленного тепла емкостью в 18 МВт*ч будет передаваться для центрального теплоснабжения города, а 30-41 % — как электричество.

Случаи применения показаний распределителей

Абзац 7 пункта 42.1 Правил 354 утверждает: «Если многоквартирный дом оборудован коллективным (общедомовым) прибором учета тепловой энергии и при этом жилые и нежилые помещения в многоквартирном доме, общая площадь которых составляет более 50 процентов общей площади всех жилых и нежилых помещений в многоквартирном доме, оборудованы распределителями, размер платы за коммунальную услугу по отоплению определяется в соответствии с положениями абзацев третьего и четвертого настоящего пункта и подлежит 1 раз в год корректировке исполнителем в соответствии с формулой 6 приложения N 2 к настоящим Правилам. Решением общего собрания собственников помещений в многоквартирном доме, членов товарищества или кооператива может быть установлена более частая в течение года периодичность проведения корректировки размера платы за коммунальную услугу по отоплению, предоставленную потребителям в указанном в настоящем абзаце многоквартирном доме, в случае осуществления оплаты коммунальной услуги по отоплению в течение отопительного периода. В случае выхода из строя, отсутствия показаний или наличия факта нарушения целостности пломбы хотя бы одного распределителя в жилом или нежилом помещении многоквартирного дома такое помещение приравнивается к помещениям, не оборудованным распределителями».

Отметим несколько особенностей приведенной нормы:

1) Как указано в самой представленной норме, она подлежит применению исключительно в случае, если МКД оборудован общедомовым прибором учета (далее – ОПУ), при этом распределителями должно быть оборудовано такое количество жилых и нежилых помещений в МКД, площадь которых составляет более 50% от общей площади всех жилых и нежилых помещений в доме.

2) Согласно приведенной норме, расчет платы за отопление проводится в соответствии с абзацами 3 и 4 пункта 42.1 Правил 354. При этом абзац 3 утверждает порядок расчета стоимости отопления для МКД, в котором имеется ОПУ и ни одно из помещений не оборудовано ИПУ (это, кстати, одно из подтверждений того, что распределитель и ИПУ – разные вещи, ведь показания распределителей могут применяться в расчетах при отсутствии в доме ИПУ). Абзац 4 утверждает порядок расчета стоимости отопления для МКД, в котором имеется ОПУ и хотя бы одно, но не все помещения дома оборудованы ИПУ. Очевидно, что распределители могут применяться в расчетах только для тех помещений, в которых нет ИПУ (одновременное оборудование помещения ИПУ и распределителями не предусмотрено, при наличии ИПУ применяются именно показания ИПУ), в том числе и поэтому для случая наличия в доме ОПУ и оборудования 100% помещений ИПУ применение в расчетах показаний распределителей не предусмотрено.

3) Показания распределителей применяются не при расчете стоимости отопления, подлежащей оплате за конкретный месяц, а исключительно при корректировке платы за отопление, которая производится 1 раз в год или чаще, если решение о более частой корректировке принято общим собранием собственников, либо общим собранием членов ТСЖ/ЖСК.

4) Все источники тепловой энергии в помещении должны быть оборудованы распределителями для того, чтобы показания таких распределителей подлежали применению в расчетах. Если хотя бы один из распределителей в помещении отсутствует или неисправен (в том числе при нарушении целостности пломб), то показания остальных распределителей в таком помещении не применяются в расчетах, помещение считается не оборудованным распределителями.

Что означает “ГВС на тепловую энергию” в платежках?

В последнее время в коммунальных квитанциях появилась строка под названием ГВС. Многие жители не понимают, что это такое, и не вносят данные в нее. Или при оплате не учитывают показатели этой строки. В результате у них возникают задолженности, накапливается пеня. Это все при накоплении большой суммы долгом может перейти в штрафы и судебные разбирательства с последующим отключением отопления зимой и горячего водоснабжения.

Подача и подогрев воды могут осуществляться в двух разных вариантах. Центральная система подачи характерна для многоквартирных домов. В этом случае вода нагревается на тепловой станции и оттуда подается в дома.

Автономная система применяется в частных домах, где не возможна или нерентабельна центральная система от тепловой станции. В таком случае воду подогревает бойлер или котел, и подается горячая вода только в конкретные помещения одного дома.

Коммунальные платежи имеют одинаковые бланки для всех, поэтому если такие документы придут и жителям многоэтажных домов, и проживающим в частном секторе, то владельцам индивидуальных домов необходимо быть очень внимательными, чтобы не оплатить лишние услуги.

Горячее водоснабжение домов, отопление зимой горячей водой является одной из самых дорогих услуг среди коммунальных платежей. Поэтому на сегодняшний день специалисты разделили его на две части, чтобы учесть все составляющие процесса. Теперь тарифы на подогрев воды называются двухкомпонентными. Одна часть – это поставка холодной воды для пользователей. Вторая часть – это подогрев воды.

Специалисты выяснили, что полотенцесушители и стояки в ванных обогревали помещения в квартирах жителей в течение целого года. В результате тратится тепловая энергия, которую также надо оплачивать. Десятилетиями потери этой энергии не учитывались, и население пользовалось ею даром.

В строчке ГВС появляется еще одна графа, которая также не понятна населению – ОДН. За этим сокращением скрываются общедомовые нужды, то есть отопление мест общего пользования – коридоров, лестничных площадок, лестничных маршей, ремонтные работы, во время которых тратится горячая вода. Они разделяются на всех жителей, так как лестницами, коридорами, холлами, в которых размещены батареи и греется воздух, пользуются все жители дома. Поэтому оплачивать ОДН также нужно.

Также в доме могут присутствовать общие водонагревательные приборы для подогрева бытовой воды. Если в доме есть такой прибор, он периодически может ломаться.

Его ремонт также обойдется в определенную сумму, которую разбросают на всех жильцов, и она появится в коммунальных платежах. Однако в многоэтажном доме могут быть квартиры, которые отказались от горячей воды. Им поставляют только холодную воду.

Очень часто работники ЖЕКа могут не внимательно отнестись к этому вопросу и выписать коммунальные платежи за подогрев воды и тем пользователям, которые не получают горячую воду. В этом случае надо следить за коммунальными платежами, и если появилась оплата за услуги, которые не получает квартира, необходимо обращаться в ЖЕК с просьбой перерасчета.

При отсутствии счетчиков берется средняя норма, установленная компанией, предоставляющей погорев теплоносителя. В целом показания счетчиков по расходу энергии умножаются на объем израсходованной воды. Цифра, которая получилась, умножается на тариф.

Что собой представляет Гкал?

Начать следует со смежного определения. Под калорией подразумевается определенное количество энергии, которое требуется для нагрева одного грамма воды до одного градуса по Цельсию (в условиях атмосферного давления, разумеется). И ввиду того, что с точки зрения расходов на отопление, скажем, дома, одна калория – это мизерная величина, то для расчетов в большинстве случаев применяются гигакалории (или сокращенно Гкал), соответствующие одному миллиарду калорий. С этим определились, движемся дальше.

Применение данной величины регламентируется соответствующим документом Министерства топлива и энергетики, изданным еще в 1995-м году.

Обратите внимание! В среднем норматив потребления в России на один квадратный метр равен 0,0342 Гкал за месяц. Безусловно, эта цифра может меняться для разных регионов, поскольку все зависит от климатических условий

Итак, что же собой представляет гигакалория, если «трансформировать» ее в более привычные для нас величины? Смотрите сами.

1. Одна гигакалория равна примерно 1 162,2 киловатт-часам.

2. Одной гигакалории энергии хватит для нагрева тысячи тонн воды до +1°С.

Формула расчета

Нормативы расхода тепловой энергии

Тепловые нагрузки рассчитываются с учетом мощности отопительного агрегата и тепловых потерь здания. Поэтому, чтобы определить мощность проектируемого котла, необходимо теплопотери здания умножить на повышающий коэффициент 1,2. Это своеобразный запас, равный 20%.

Для чего необходим такой коэффициент? С его помощью можно:

  • Прогнозировать падение давления газа в магистрали. Ведь зимой потребителей прибавляется, и каждый старается взять топлива больше, чем остальные.
  • Варьировать температурный режим внутри помещений дома.

Добавим, что тепловые потери не могут распределяться по всей конструкции здания равномерно. Разность показателей может быть достаточно большой. Вот некоторые примеры:

  • Через наружные стены покидает здание до 40% тепла.
  • Через полы — до 10%.
  • То же самое относится и к крыше.
  • Через вентиляционную систему — до 20%.
  • Через двери и окна — 10%.

Итак, с конструкцией здания разобрались и сделали одно очень важное заключение, что от архитектуры самого дома и места его расположения зависят потери тепла, которые необходимо компенсировать. Но многое также определяется и материалами стен, крыши и пола, а также наличием или отсутствием теплоизоляции. Это немаловажный фактор

Это немаловажный фактор.

К примеру, определим коэффициенты, снижающие теплопотери, зависящие от оконных конструкций:

  • Обычные деревянные окна с обычными стеклами. Для расчета тепловой энергии в данном случае используется коэффициент, равный 1,27. То есть через такой вид остекления происходит утечка тепловой энергии, равной 27% от общего показателя.
  • Если установлены пластиковые окна с двухкамерными стеклопакетами, то используется коэффициент 1,0.
  • Если установлены пластиковые окна из шестикамернного профиля и с трехкамерным стеклопакетом, то берется коэффициент 0,85.

Идем дальше, разбираясь с окнами. Существует определенная связь площади помещения и площади оконного остекления. Чем больше вторая позиция, тем выше тепловые потери здания. И здесь есть определенное соотношение:

  • Если площадь окон по отношению к площади пола имеет всего лишь 10%-ный показатель, то для расчета тепловой мощности системы отопления используется коэффициент 0,8.
  • Если соотношение располагается в диапазоне 10-19%, то применяется коэффициент 0,9.
  • При 20% — 1,0.
  • При 30% —2.
  • При 40% — 1,4.
  • При 50% — 1,5.

И это только окна. А есть еще влияние материалов, которые использовались в строительстве дома, на тепловые нагрузки. Расположим их в таблице, где стеновые материалы будут располагаться с уменьшением тепловых потерь, а значит, их коэффициент будет также снижаться:

Вид строительного материала

Как видите, разница от используемых материалов существенная. Поэтому еще на стадии проектирования дома необходимо точно определиться с тем, из какого материала он будет возводиться. Конечно, многие застройщики строят дом на основе бюджета, выделенного на строительство. Но при таких раскладках стоит пересмотреть его. Специалисты уверяют, что лучше вложиться первоначально, чтобы впоследствии пожинать плоды экономии от эксплуатации дома. Тем более что система отопления зимой составляет одну из главных статей расхода.

Размеры комнат и этажность здания

Схема системы отопления

Итак, продолжаем разбираться в коэффициентах, влияющих на формулу расчета тепла. Как влияют размеры помещения на тепловые нагрузки?

  • Если высота потолков в вашем доме не превышает 2,5 метра, то в расчете учитывается коэффициент 1,0.
  • При высоте 3 м уже берется 1,05. Незначительная разница, но она существенно влияет на тепловые потери, если общая площадь дома достаточно велика.
  • При 3,5 м — 1,1.
  • При 4,5 м —2.

А вот такой показатель, как этажность постройки, влияет на теплопотери помещения по-разному. Здесь необходимо учитывать не только количество этажей, но и место помещения, то есть, на каком этаже оно расположено. К примеру, если это комната на первом этаже, а сам дом имеет три-четыре этажа, то для расчета используется коэффициент 0,82.

При перемещении помещения в верхние этажи повышается и показатель теплопотерь. К тому же придется учитывать чердак — утеплен он или нет.

Как видите, чтобы точно подсчитать тепловые потери здания, необходимо определиться с различными факторами. И их все обязательно надо учитывать. Кстати, нами были рассмотрены не все факторы, снижающие или повышающие тепловые потери. Но сама формула расчета будет в основном зависеть от площади отапливаемого дома и от показателя, который называется удельным значением тепловых потерь. Кстати, в данной формуле оно стандартное и равно 100 Вт/м². Все остальные составляющие формулы — коэффициенты.

Тепловая энергия: единицы измерения и их правильное использование

Тепловая энергия – это система измерения теплоты, которая была изобретена и используется еще два столетия назад. Основным правилом работы с данной величиной было то, что тепловая энергия сохраняется и не может просто исчезнуть, но может перейти в другой вид энергии.

Существует несколько общепринятых единиц измерения тепловой энергии. В основном их используют в промышленных отраслях, таких как энергетика. Внизу описаны самые распространенные из них:

  • Калория – единица измерения, не входящая в общую систему, но часто использующаяся для сравнения с другими параметрами. В основном исчисления производят в килокал, Мегакал, Гигакал
  • Тонна пара – одна из специфичных и самых редко используемых величин, с помощью которых измеряют количество энергии тепла в особо больших объемах. Одна единица «тонны пара» равняется количеству пара, который можно получить из 1 тонны воды
  • Джоуль – распространенная единица измерения из СИ, использующаяся для общего обозначения количества энергии в разных ее видах. Основными величинами являются кДж, МДж, ГДж
  • кВт на час (Квт х ч) – основная единица измерения электрической энергии, используемая в частности странами СНГ.

Любая единица измерения, входящая в систему СИ, имеет предназначение в определении суммарного количества того или иного вида энергии, такого как выделения тепла или электроэнергия. Время проведения измерения и количество не влияют на эти величины, почему можно их использовать как для потребляемой, так и для уже потребленной энергии. Кроме того, любая передача и прием, а также потери тоже исчисляются в таких величинах.

Где применяют единицы измерения тепловой энергии

  1. Подсчет выработанной энергии пара в котельных за один сезон или год.
  2. Определение необходимого количества тепла для проведения нагрева определенного количества воды с конкретным температурным режимом.
  3. Полный подсчет количества тепловой энергии, которая служит для обеспечения нагревания горячей воды, отопительных сооружений и вентиляции помещений.
  4. В некоторых вариантах величину тепловой энергии используют для измерения объема природного газа. В таком случае учитывается способность определенного количества вещества производить тепло при сжигании.
  5. В катальнях зачастую используют данную величину для определения показателя используемой электроэнергии в отопительных сезонах.

Единицы измерения энергии, переведенные в тепловую

Для наглядного примера ниже приведены сравнения различных популярных показателей СИ с тепловой энергией:

  • 1 ГДж равен 4 Гкал, что в электрическом эквиваленте равняется 3400 миллионов кВт на час. В эквиваленте тепловой энергии 1 ГДж = 0,44 тонны пара
  • В то же время 1 Гкал = 0,24 ГДж = 16000 млн. кВт на час = 1,9 тонн пара
  • 1 тонна пара равняется 2,3 ГДж = 0,6 Гкал = 8200 кВт на час.

В данном примере приводимая величина пара принята за испарение воды при достижении 100°С.

Чтобы провести расчеты количества тепла, используется следующий принцип: для получения данных о количестве тепла его используют в нагревании жидкости, после чего масса воды умножается на пророщенную температуру. Если в СИ масса жидкости измеряется килограммами, а температурные перепады в градусах Цельсия, то результатом таких расчетов будет количество теплоты в килокалориях.

Если есть необходимость в передаче тепловой энергии от одного физического тела другому, и вы хотите узнать возможные потери, то стоит массу получаемого тепла вещества умножить на температуру повышения, а после узнать произведение получаемого значения на «удельную теплоемкость» вещества.

Заключение

Тепловой аккумулятор для ракеты — это устройство, которое далеко от понимания обычного потребителя. А вот теплоаккумулятор для системы отопления вы вполне сможете подключить самостоятельно. Для этого транзитом через бак должен будет проходить обратный трубопровод, на концах которого предусмотрены выход и вход.

На первом этапе между собой следует соединить бак и обратку котла. Между ними располагается циркуляционный насос, он будет перегонять теплоноситель из бочки в отсекающий кран, отопительные приборы и расширительный бак. Со второй стороны устанавливается циркуляционный насос и отсекающий кран.

Источник фото — сайт http://www.devi-ekb.ru

Используя накопители тепловой энергии можно экономически эффективно сместить потребление гигаватт энергии. Но на сегодняшний день рынок таких накопителей катастрофически мал, по сравнению с потенциальными возможностями. Основная причина кроется в том, что на начальном этапе зарождения систем аккумуляции тепла, производителями уделялась мало значения исследованиям в этой области. Впоследствии производители в погони за новыми стимулами привели к тому, что технология испортилась, а люди стали неверно понимать ее цели и методы.

Наиболее очевидной и объективной причиной использования системы аккумуляции тепла, является эффективное сокращение количества затрачиваемых средств на потребляемую энергию, к тому же стоимость энергии в пиковые часы, значительно выше, чем в другое время.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector