Коэффициент теплопроводности материалов
Содержание:
- Как рассчитать толщину стен
- Таблица теплопроводности теплоизоляционных материалов
- Расчёт
- Показатели теплопроводности
- Теплопроводность некоторых материалов
- Коэффициент теплопроводности строительных материалов – таблицы
- Термическое сопротивление
- Общие сведения
- Как применяются показатели в строительстве
- Теплопроводность через цилиндрическую стенку (граничные условия первого рода)
- Контактное термическое сопротивление
- Факторы, влияющие на физическую величину
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающих конструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
Формула расчета теплового сопротивления
R — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
- Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
- Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
Рассчитывать придется все ограждающие конструкции
- Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными
Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Наименование материала | Коэффициент теплопроводности Вт/(м·°C) | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | |||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей
Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала
Расчёт
Термическое сопротивление отдельного слоя ограждающей конструкции или однородного огражденияR=δλ{\displaystyle R={\frac {\delta }{\lambda }}}, где δ — толщина слоя материала (м), λ — коэффициент теплопроводности материала (Вт/).
Чем больше полученное значение R, тем выше теплозащитные свойства слоя материала. Сопротивление теплопередаче ограждающей конструкции равно сумме термических сопротивлений слоев из однородных материалов, составляющих эту конструкцию.
Для примера рассчитаем теплопотери помещения верхнего этажа дома через крышу. Примем температуру внутреннего воздуха +20°С , а наружного −10°С. Таким образом, температурный перепад составит 30°С (или 30 К). Если, например, потолок комнаты со стороны крыши изолирован стекловатой с низкой плотностью толщиной 150 мм, то сопротивление теплопередачи крыши составит около R=2,5 кв.м*град/Вт. При таких значениях температурного перепада и сопротивления теплопередаче, теплопотери через один квадратный метр крыши равны: 30 /2,5=12 Вт. При площади потолка комнаты 16 м2 мощность оттока тепла только через потолок составит 12*16=192 Вт.
Согласно «СНиП 1954» R многослойных ограждений = Rв + R1 + R2 + … + Rн, где Rв — сопротивление теплопереходу у внутренней поверхности ограждения, R1 и R2 — термические сопротивления отдельных слоёв ограждения, Rн — сопротивление теплопереходу у наружной поверхности ограждения.
Показатели теплопроводности
Любой элемент в природе имеет различную степень проводимости. Тепло проходит сквозь него в зависимости от скорости движения частиц, которые способны передать температурные колебания. Чем частицы ближе находятся одна к другой, тем теплообмен будет проходить быстрее. Получается, что чем более плотный материал, тем быстрее он будет нагреваться или остывать. Плотность является основным фактором теплопередачи, показывая ее интенсивность.
Таблица с данными для камня
Выражается данный показатель коэффициентом теплопроводности. Обозначение буквенное производится символом «λ». Единица измерения Вт/(м*Со). Чем больше численные данные этого коэффициента, тем лучше материал проводит тепло. Существует величина, обратная проводимости тепла, которая называется тепловое термическое сопротивление. Единица измерения: м2*Со/Вт. Буквенное обозначение «R».
Данные по регионам
Нормируемое сопротивление можно посмотреть в справочниках
Важно придерживаться норм, чтобы не пришлось дополнительно утеплять дом, так как холод легко проникает сквозь стены. Правильному теплообмену, такому, какой бы подходил для данного региона, должно предшествовать утепление стен и верное использование материалов
Значения по регионам
Теплопроводность некоторых материалов
Материал | В сухом состоянии(нулевая влажность)λ, Вт/м·°C | При влажности в условиях эксплуатации «Б»λ, Вт/м·°C | Влажность% |
---|---|---|---|
Кладка из полнотелого керамического кирпича на цементно-песчаном растворе | 0,56 | 0,81 | 2 |
Кладка из полнотелого силикатного кирпича на цементно-песчаном растворе | 0,7 | 0,87 | 4 |
Сосна и ель поперёк волокон | 0,09 | 0,18 | 20 |
Фанера клееная | 0,12 | 0,18 | 13 |
Плиты древесно-волокнистые и древесно-стружечные плотностью 200 кг/м3 | 0,06 | 0,08 | 12 |
Опилки древесные | 0,09 Вт/м·°C(0,08 ккал/м·час·°C) | (средняя влажность в наружных ограждениях) | |
Листы гипсовые обшивочные (сухая штукатурка) плотностью 800 кг/м3 | 0,15 | 0,21 | 6 |
Плиты минераловатные из каменного волокна плотностью 180 кг/м3 | 0,038 | 0,048 | 5 |
Плиты из пенополистирола плотностью до 10 кг/м3 | 0,049 | 0,059 | 10 |
Коэффициент теплопроводности строительных материалов – таблицы
Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.
Таблица коэффициентов теплоотдачи материалов. Часть 1
Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов
Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.
Таблица теплопроводности кирпича
Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.
Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)
Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.
Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.
Теплопроводность разных видов кирпичей
Таблица теплопроводности металлов
Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.
Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3
Таблица теплопроводности дерева
Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.
Проводимость тепла дереваПрочность разных пород древесины
Таблица проводимости тепла бетонов
Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.
Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов
Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.
Какой коэффициент теплопроводности у воздушной прослойки
В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу
Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины. Таблица проводимости тепла воздушных прослоек
Таблица проводимости тепла воздушных прослоек
Термическое сопротивление
Любая стена, дверь, окно служит для ограждения от внешних природных воздействий. Они способны в разной степени защитить жилище от холодов, так как коэффициент проводимости у них отличается. Для каждого ограждения коэффициент рассчитываться должен по-разному. Точно так же ведется расчет для внутренних перегородок, стен, дверей, неотапливаемых частей дома.
Если в здании имеются части, которые не протапливаются, необходимо утеплять стены между ними и другими помещениями так же качественно, как и внешние. Воздух – плохой переносчик тепла, потому что там частицы находятся на значительном отдалении друг от друга. Выходит, что если изолировать некоторые воздушные массы герметично, получится неплохая изоляция от холода. Для уточнения данных производится расчет приведенного сопротивления. Данные показывают, насколько хорошо утеплено жилище, нет ли необходимости в дополнительном утеплении.
Современные материалы
В старых домах делали всегда по две рамы, чтобы между ними находилось некоторое количество воздушных масс. Теперь по такому же принципу делаются стеклопакеты, но воздух между стеклами откачивается полностью, чтобы частиц, проводящих тепло, вообще не было. Термическое сопротивление в них значительно превышает показатели старых окон. Входные двери делаются по такому же принципу. Стараются сделать небольшой коридор, предбанник, который сохранит тепло в доме.
Если в жилище установить дополнительные резиновые уплотнители в несколько слоев, это позволит повысить теплоизоляционные свойства. Современные входные двери создаются многослойными, там помещается несколько разных слоев утеплительного материала. Конструкция становится практически герметичной, дополнительное утепление часто не требуется. Сопротивление теплопередаче стен обычно не такое хорошее, потому используются дополнительные материалы для утепления.
Общие сведения
Изолированная чашка из нержавеющей стали с двойными стенками помогает сохранить кофе горячим, но не обжечь при этом руки.
Термическое или тепловое сопротивление — это свойство материи противостоять изменениям температуры. Когда вещества с высоким термическим сопротивлением используют для изоляции, они хуже проводят тепло. По сравнению с веществами с низким термическим сопротивлением, такие материалы лучше держат температуру. Материалы с высоким термическим сопротивлением используют, когда необходимо поддерживать постоянную температуру внутри камеры или помещения, так как они замедляют утечку тепла в более холодную окружающую среду, или, наоборот, поступление тепла в камеру из более теплой среды.
Радиаторы изготавливают из материалов с низким термическим сопротивлением, например из алюминия и меди.
Пример использования материалов с высоким тепловым сопротивлением — термоизоляция вокруг камеры холодильника, для того, чтобы не пропускать тепло внутрь. Такие материалы используют, также, в скафандрах, чтобы не выпускать наружу тепло тела космонавтов.
Материалы с низким термическим сопротивлением, наоборот, хорошо проводят тепло, поэтому их используют, когда необходимо охладить предмет. С их помощью тепло передается от охлаждаемого предмета в окружающую среду. Этот метод часто используется в радиоэлектронике, для охлаждения различных элементов электронного оборудования. Выделяемое ими тепло нагревает окружающий воздух.
Передвижной конвекционный нагреватель нагревает воздух, а его стенки остаются теплыми а не горячими, поэтому кошки очень любят возле них греться.
Чтобы лучше понять тепловое сопротивление, рассмотрим три возможных способа передачи тепла: конвекцию, кондуктивный теплообмен или теплопроводность, и тепловое излучение. Конвекция — движение большой группы молекул из теплой среды в холодную. Здесь нагревание среды происходит в основном не потому, что молекулы сообщают свою энергию соседним молекулам, а потому, что они перемещаются, и с ними передвигается и сама среда. Обычно это движение происходит снизу вверх, то есть горячие молекулы движутся вверх, вытесняя холодные молекулы вниз. Например, теплая вода движется от нагревателя в аквариуме (помещенного желательно на дне аквариума) по направлению к холодной воде и к рыбкам. То есть тут вода в аквариуме перемешивается. Переносные обогреватели работают по тому же принципу. Теплый воздух вокруг них уходит в комнату, а на его место приходит холодный.
Эта светодиодная лампа не может работать без алюминиевого радиатора, который передает тепло, выделяемое лампой, в окружающую среду методом кондуктивного теплообмена и конвекции.
Кондуктивный теплообмен или теплопроводность, наоборот, происходит на молекулярном уровне. Он вызван беспорядочным колебанием нагретых молекул вещества: во время движения они сталкиваются с другими молекулами и передают им свою энергию. Обычно кондуктивный обмен происходит внутри среды, или между двумя телами, находящимися вблизи друг от друга. Скорее такой теплообмен произойдет в твердых телах, так как молекулы в них расположены достаточно близко друг от друга. Хороший пример такого теплообмена — нагревание стен дома снаружи вовнутрь, в теплую погоду, и наоборот потеря тепла — в холодную. Если дом плохо изолирован, то зимой тепло постепенно передвигается по стенам из комнаты на улицу, и комната охлаждается, что вынуждает расходовать больше энергии на работу обогревателя.
Тепловое излучение этих обогревателей помогает посетителям ресторана в Майами согреться в холодные декабрьские вечера.
Тепловое излучение передает тепло на гораздо большие расстояния, чем конвекция. Для такого теплообмена не нужна среда, так как тепло передается в форме электромагнитного излучения. Солнечное излучение, нагревающее Землю — пример теплового излучения, также как и инфракрасный свет, который излучается горячими предметами и который можно увидеть с помощью прибора ночного видения или измерить инфракрасным термометром.
Единицы
Термическое сопротивление измеряют как увеличение температуры на единицу мощности. Обычно его измеряют в градусах Цельсия на ватт, или °C/Вт. Увеличение температуры, которое происходит при увеличении мощности, легко измерить. Зная разницу температуры и мощности, вычисляют термическое сопротивление.
Как применяются показатели в строительстве
Для каждого материала, используемого в строительстве, важно определить степень проводимости тепла. Теплоизоляционные свойства влияют на скорость промерзания стен, насколько материал подвержен воздействию холода
Показатель сопротивления при теплопередаче для любого современного материала уже вписан в справочники.
Современные технологии предполагают использование нескольких слоев для стен, дверей, поэтому показатели тепловой проводимости в них могут объединяться. Для показа общей степени проводимости принята величина «приведенное сопротивление теплопередаче».
Таблица с данными для стеклопакетов
Рассчитать ее можно точно так же, как и предыдущие данные. Но учитывать следует несколько показателей теплопроводности. Второй вариант произведения расчетов теплоотдачи – использование однородного аналога многослойной стенки. Он должен пропускать такое же количество тепла за равный промежуток времени. Разница в температурах для внутренней части помещения и внешней должна быть одинаковой.
Расчет приведенного сопротивления производится не на квадратный метр, а на целую комнату или весь дом. Показатель помогает обобщить данные о проводимости тепла всего жилища, а точнее материалов, из которых оно изготовлено. Сопротивление для пола также необходимо учитывать.
Теплопроводность через цилиндрическую стенку (граничные условия первого рода)
Теплообменные аппараты в большинстве случаев имеют не плоские, а цилиндрические поверхности, например рекуператоры типа «труба в трубе», кожухотрубные водонагреватели и т.д. Поэтому возникает необходимость рассмотрения основных принципов расчета цилиндрических поверхностей.
Согласно закону Фурье, количество теплоты, проходящее в единицу времени через этот слой, равно:
Подставим значения граничные значение и вспомним, что разность логарифмов равна логарифму отношению аргументов, получим:
Распределение температур внутри однородной цилиндрической стенки подчиняется логарифмическому закону, и уравнение температурной кривой имеет вид:
Количество теплоты, проходящее через стенку трубы, может быть отнесено либо к единице длины трубы L, либо к единице внутренней F1 или внешней F2 поверхности трубы. При этом расчетные формулы принимают следующий вид:
qL = Q/L = πΔT / (1/2λ * ln(d2/d1));
q1 = Q/S1 = Q/πd1L
Контактное термическое сопротивление
Увеличение сопротивления тепловому потоку на 2-х поверхностных точках
контакта обусловлено меньшей теплопроводностью газового слоя
по сравнению с твердым, отклонением теплового потока от нормали
к контактной поверхности, а также увеличением теплового сопротивления
поверхностного слоя за счет оксидной пленки и загрязнения. Если
не учитывать радиационный теплообмен между поверхностями, разделенными
слоем газа、 Сопротивление соизмеримо. Когда теплопроводность
контактирующего твердого тела высока, большая часть тепла передается
через точку контакта.
Если зазор между контактными поверхностями заполнен высокопроводящим газом (например, гелием) или жидкостью, то большая часть передаваемого тепла будет проходить через промежуточный слой. По мере увеличения силы сжатия тепловое сопротивление реальных контактов будет значительно уменьшаться, но тепловое сопротивление газовой прослойки изменится только на 20% или менее. Величина контактного термического сопротивления зависит от силы сжатия, чистоты и твердости контактной поверхности, температуры и свойств газа или жидкости, заполняющих пространство между контактными поверхностями.
Показана экспериментально полученная прочность на сжатие в парах медь-медь и зависимость контактного термического сопротивления от поверхности finish. As как видно из рисунка, при увеличении нагрузки тепловое сопротивление резко уменьшается, а затем становится плавным. При силе сжатия более 200 бар контактное тепловое сопротивление больше не будет зависеть от величины этой силы. Это правило подтверждается большинством металлов, особенно если поверхность контакта имеет высокую чистоту.
На рис. 3.9 показано, что увеличение класса чистоты обработки снижает
контактное термическое сопротивление и ослабляет зависимость от силы
сжатия. Когда твердость контактной поверхности уменьшается, фактическая
площадь контакта увеличивается и тепловое сопротивление уменьшается.
Температура контактной зоны также влияет на ее тепловую resistance.
As температура повышается, контактное тепловое сопротивление
уменьшается. Именно поэтому при контакте с предметами из дюралюминия
температура повышается с 88°С до 214°с, контактное тепловое
сопротивление уменьшается на 40-60%.
При покрытии контактной поверхности мягкими металлами (медь, олово
и др.) или кладки из мягких материалов, контактное тепловое
сопротивление значительно снижается. Контактное тепловое сопротивление
вызывает резкое изменение температуры на границе раздела между двумя
слоями. Это можно считать скачком температуры. Из уравнения (3.7)видно,
что величина этого скачка пропорциональна тепловой нагрузке
и контактному тепловому сопротивлению. Поэтому, если вы обрабатываете
поверхность в соответствии с чистотой 6-го класса! В стали марки мг и Р
=30 повышение температуры контактной поверхности составляет 20-400 бар,
в стали 30-дюралюминиевой-около 290-70°С, для стальных пар 400-100°С.
Примеры решения задач по теплотехнике
Теплопроводность цилиндрической стенки | Теплопроводность тел с внутренними источниками теплоты |
Теплопередача через цилиндрическую стенку | Теплопроводность плоской стенки при двумерном температурном поле |
Факторы, влияющие на физическую величину
Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.
Температура материала
Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.
С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.
Фазовые переходы и структура
Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).
Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.
Электрическая проводимость
Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).
Процесс конвекции
Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.
Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.
Среди большого количества параметров, характеризующие металлы существует и такое понятие как теплопроводность. Ее значение сложно переоценить. Этот параметр применяют при расчете деталей и узлов. Например, шестеренчатых передач. Вообще теплопроводностью занимается целый раздел науки под названием термодинамика.